ORIGINAL RESEARCH

Meta-Analysis of the Incidence, Prevalence, and Correlates of Atrial Fibrillation in Rheumatic Heart Disease

Jean Jacques Noubiap¹, Ulrich Flore Nyaga², Aude Laetitia Ndoadoumgue³, Jan René Nkeck², Anderson Ngouo² and Jean Joel Bigna^{4,5}

¹ Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, AU

² Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, Yaoundé, CM

³ School of Health and Related Research, The University of Sheffield, Sheffield, UK

⁴ Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, CM

⁵ Faculty of Medicine, University of Paris Sud XI, Le Kremlin-Bicêtre, FR

Corresponding author: Jean Jacques Noubiap, MD (noubiapjj@yahoo.fr)

Objective: To estimate the incidence, prevalence, and correlates of atrial fibrillation (AF) in a global population with rheumatic heart disease (RHD).

Methods: Bibliographic databases were searched to identify all published studies providing data on AF in patients with RHD. Random-effects meta-analysis method was used to pool estimates. **Results:** Eighty-three studies were included, reporting data from 75,637 participants with RHD in 42 countries. The global prevalence of AF in RHD was 32.8% (range: 4.3%–79.9%). It was higher in severe valvular disease (30.8% vs 20.7%, p = 0.009), in severe mitral valve disease compared to severe aortic disease (30.4% vs 6.3%, p = 0.038). The global cumulative incidence of AF in patients with RHD was 4.8%, 11.4%, 13.2%, and 30.8% at 1, 2, 5, and 10 years of follow-up, respectively. From comparison between patients with and without AF, AF was associated with increased age (mean difference [MD]: 9.5 years; 95% CI: 7.8–1.3), advanced heart failure (odds ratio [OR]: 4.4; 95% CI 2.1–9.3), tricuspid valve involvement (OR: 4.0; 95% CI: 3.0–5.3), history of thromboembolism (OR: 6.2; 95% CI: 3.4–11.4), highly sensitive C-reactive protein (MD: 5.5 mg/dL; 95% CI: 1.2–9.8), systolic pulmonary arterial pressure (MD: 3.6 mmHg; 95% CI: 0.8–6.3), right atrium pressure (MD: 1.5 mmHg; 95% CI: 1.0–2.0), and left atrium diameter (MD: 8.1 mm; 95% CI: 5.5–10.7).

Conclusions: About one-third of patients with RHD have AF, with an incidence which almost triples every five years after diagnosis. Factors associated with AF include age, advanced heart failure, thromboembolism, and few cardiac hemodynamics parameters.

Keywords: atrial fibrillation; rheumatic heart disease; prevalence; incidence; risk factors

Introduction

Rheumatic heart disease (RHD) is a leading global health problem, which disproportionally affects low- and middle-income countries (LMICs) [1]. There are nearly 33 million people living with RHD, with about 80% of them residing in LMICs [2]. RHD accounts for about 275,000 deaths every year, 95% of these occurring in LMICs [2]. RHD results from recurrent episodes of acute rheumatic fever, an autoimmune response to untreated group A streptococcal pharyngitis that causes inflammation and fibrosis of the heart valves. Severe valvular damage leads to altered hemodynamics, chamber remodeling, subsequently heart failure, pulmonary hypertension, atrial fibrillation (AF), thromboembolism, infective endocarditis, and eventually premature death [1].

AF, which is the most sustained cardiac arrhythmia in the general population, is a major problem in RHD, owing to its prevalence and complications [1]. AF is a factor of progression and decompensation of heart failure in RHD, and is associated with cardioembolic stroke and systemic emboli [1, 3–5]. Furthermore, AF has been identified as a predictor of event-free survival before and after mitral valve intervention [4–7]. Several clinical, echocardiographic, and hemodynamic factors have been associated with the occurrence of AF in patients with RHD. Those factors include age, cardiac chambers sizes and pressures, left ventricular function, mitral valve involvement, and inflammatory markers such as highly sensitive C-reactive protein, amongst others [8–10]. However, reports on the correlation of those factors with AF in RHD have shown some inconsistencies.

The current review summarizes the available data on the incidence and prevalence of AF in the global RHD population, according to region, RHD endemicity, age group, valvular involvement and severity, and pre- and post-valvular intervention. A meta-analysis of the potential correlates of AF in RHD is also presented. To the best of our knowledge, this is the first systematic review and meta-analysis of the epidemiology of AF in RHD.

Methods

This review was conducted as recommended in the Joanna Briggs Institute reviewer's manual [11] and is reported in accordance with the Meta-analyses Of Observational Studies in Epidemiology guidelines [12].

Literature search

PubMed/MEDLINE, Excerpta Medica Database (EMBASE), Web of Science, and Global Index Medicus were searched to identify all studies reporting primary data of the prevalence, incidence, or correlates of AF in people with RHD, published until April 30, 2019, irrespective of the language. The search strategy was built according to the PRESS guidelines [13], based on the combination of relevant terms including 'rheumatic heart disease', 'atrial fibrillation', and their bibliographic synonyms (Supplementary Table 1, Appendix). The reference lists of all eligible articles and relevant reviews were scrutinized to identify potential additional data sources.

Selection of studies to include in the review

We included observational studies either cohort, case-control, or cross-sectional, reporting on the prevalence or the incidence or the correlates of AF in individuals with RHD, or enough data to compute these estimates. We excluded letters, editorials, reviews, and studies without primary data or a clear description of methods. For studies published in more than one report (duplicates), the most comprehensive reporting the largest sample size was considered.

Two investigators (JJN and JJB) independently screened records for eligibility based on titles and abstracts. Full-texts of articles deemed potentially eligible were retrieved. Further, these investigators independently assessed the full-text of each study for eligibility, and consensually retained studies to be included. Disagreements were solved through a discussion.

Data extraction and management

Data were extracted using a preconceived, piloted, and standardized data abstraction form. Three pairs of investigators (UFN, ALN, AN, JRN, JJN, JJB) independently extracted data including: name of the first author, year of publication, study design, period of inclusion of participants, recruitment site (country, number of sites), sampling method, number of participants included with RHD, number of cases of AF, age distribution, proportion of males, and clinical presentation. We assigned a World Health Organization (WHO) geographic region and a development index to each study regarding the country of recruitment. Data were collected to compute subgroup analysis according to age group (children, adolescents, adults), valve involved (aortic and mitral), type of valvular lesion (regurgitation, stenosis, or mixed), severity of valvular lesion (mild/moderate vs severe), whether the participants have had a valvular intervention (valvulotomy, valvuloplasty, surgical valve replacement) or not, on clinical, biological, echocardiographic, and hemodynamic parameters evaluated as potential correlates of AF in RHD, including history of cerebrovascular event, heart failure, highly sensitive C reactive protein, brain natriuretic peptide, pulmonary artery pressures, right and left atrium pressures and diameters, left ventricular ejection fraction and diameters, and valvular areas.

We used an adapted version of the tool developed by the Joanna Briggs Institute to assess the risk of bias in included studies [14]. Two pairs of investigators (UFN, ALN, AN, JRN) independently ran the assessment. Discrepancies were discussed and resolved through consensus. Inter-rater agreements between investigators for study inclusion and methodological quality assessment were assessed using Cohen's κ .

Statistical analysis

Meta-analyses were conducted using the meta packages of the R statistical software (version 3.6.0, The R Foundation for statistical computing, Vienna, Austria). With *metaprop* function, we used the reference method to synthetize prevalence data as recommended by Barendregt and colleagues [15]. All prevalence estimates were reported with their 95% confidence intervals (95% CI). To minimize the effect of studies with extremely small or extremely large prevalence estimates on the overall estimate, the variance of studyspecific prevalence was stabilized with the Freeman-Tukey double arcsine transformation before pooling the data with the random-effects meta-analysis model [15]. Heterogeneity was assessed by the χ^2 test on Cochrane's Q statistic [16], which was quantified by I² values, assuming I² values of 25, 50, and 75% respectively representing low, medium, and high heterogeneity [17]. The Egger test was used to assess the presence of publication bias [18]. A p value < 0.10 was considered indicative of a statistically significant publication bias [19]. We conducted subgroup analyses according to WHO regional location of included participants, level of human development index, valvular surgical intervention status (before and after), and age group (children, adolescents, and adults). We calculated R² through meta-regression analysis (with metareq function) to identify covariates that explained the heterogeneity in the global estimate, and therefore quantify the heterogeneity accounted for. We conducted a leave-one-out sensitivity analysis to explore how sensitive the global prevalence of AF in RHD was to the exclusion of individual studies. We also conducted a sensitivity analysis selection only in studies with low risk of bias in the methodological assessment.

For investigating factors associated with AF, a meta-analysis using the random-effects method of DerSimonian and Laird was performed to pool weighted odds ratios (OR) and weighted mean differences (MD) with *metabin* and *metacont* functions respectively [20]. All strengths of association were reported with their 95% CI. We also performed a narrative synthesis of factors associated AF.

Results

Study selection and characteristics

In total, we identified 3,212 records among which 83 studies were finally included (Supplementary Figure 1) [8–10, 21–101]. Agreement between review authors for study selection ($\kappa = 0.78$), and key data extraction ($\kappa = 0.91$), and methodological quality assessment ($\kappa = 0.83$) were moderate to high. Studies' characteristics are summarized in Supplementary Table 2. For the 73 studies included in prevalence and incidence analysis, 19 (26%) studies had high risk, 30 (41%) moderate risk, and 24 (33%) low risk of bias. For the 18 studies included in the meta-analysis of correlates, one (6%) had high risk, six (33%) moderate risk, and 11 (61%) had low risk of bias. In total, data were from 75,637 participants in 42 countries. Forty-three (60%) studies collected data among patients without valvular surgical intervention, 26 (36%) among patients after valvular surgical intervention, and three (4%) studies included both patients. Data were published between 1984 and 2019. Participants were included in original studies from 1965 to 2017. The proportion of males varied between 0 and 63%. Most studies were cross-sectional (51%) and prospectively collected data (64%). Individual characteristics of included studies are in Supplementary Table 3.

Global incidence and prevalence of AF in patients with RHD

The global prevalence of AF in RHD was 32.8% (95% CI 28.1–37.7) with substantial heterogeneity (**Figure 1**), ranging from 4.3% [54] to 79.9% [51] in individual studies. This heterogeneity was significantly explained by the country's level of development (R²: 57.6%), distribution across WHO regions (R²: 50.4%), age groups (R²: 35.0%), RHD endemic profile of the country (R²: 24.5%), and slightly by study period (R²: 7.0%) and by valvular intervention status (R²: 3.9%) (**Table 1**). In a multivariate meta-regression model with all these covariates, the R² was 57.1%. In the leave-one-out sensitivity analysis, all estimated global prevalences were in the range of the crude analysis (Supplementary Figure 2). When considering only low-risk bias studies, the global prevalence was very close to that of crude analysis (**Table 1**). The funnel plot (Supplementary Figure 3) suggested the presence of publication bias which was confirmed by the Egger test, p < 0.0001 (**Table 1**).

According to WHO regions, the prevalence of AF in patients with RHD varied from 12.6% (95% CI 8.5–17.5) in South-East Asia to 50.1% (43.1–57.1) in Europe, with significant difference between regions (p < 0.0001) (**Figure 1** and **Table 1**). This prevalence increased with the country's level of development: from 13.2% (8.2–19.4) in less developed countries to 45.4% (38.7–52.3) in the most developed countries; p < 0.0001 (**Table 1**). The prevalence of AF in RHD was lower in RHD endemic areas (22.8%; 18.5–27.3) compared to non-endemic (42.8%; 38.1–47.6); p < 0.0001 (**Table 1**). The prevalence increased with age, varying from 7.6% (1.9–16.8) in children and adolescents to 39.7% (34.4–45.1) in adults; p < 0.0001 (**Table 1**). Studies

Author, Year	Cases	Sample		Prevalen	ice (%)	[95% C.I.]	Weight
Africa						MA 4 4 1 1	
Guteta, 2016 Melka, 1996	23	105				[14.4; 31.0]	1.4%
	26	114				[15.5; 31.6]	1.4%
Okello, 2013 Sliwa, 2009	43 34	309 344	+			[10.3; 18.3]	1.5% 1.5%
Sliwa, 2009 Fadele, 2013	34 16	344 365	-		9.9 4.4	[6.9; 13.5]	1.5%
radele, 2013 Yadeta, 2019	16	365 500	÷.			[2.5; 7.0]	1.5%
Zhang, 2013	18	130	-			[7.0; 12.3] [8.4; 21.0]	1.4%
Subgroup prevalence		1867	\$			[8.5; 17.5]	10.3%
Heterogeneity: I ² = 87.9%, τ ² = 0.007	1, p < 0.0001						
Americas	22	90				[40.0:04.0]	4 40/
Doukky, 2014 Esteves, 2017	22	90 142				[16.0; 34.6] [12.3; 25.7]	1.4% 1.5%
López-meneses, 2009	9	61	_			[7.0; 26.2]	1.4%
Sancho, 1990	90	197		-		[38.6; 52.9]	1.4%
Sims, 2006	47	104				[35.4; 55.3]	1.4%
Souza, 2011	4	50				[2.2; 19.2]	1.4%
Subgroup prevalence Heterogeneity: I ² = 92.7%, t ² = 0.031	11. p < 0.0001	644			25.1	[13.6; 38.8]	8.5%
Eastern Mediterranean Abbas, 2016	93	176		_ 	52 P	[45.2; 60.4]	1.5%
Drighil, 2012	8	59				[45.2, 00.4]	1.4%
Fawzy, 2009	68	474	-+-			[11.3; 17.8]	1.5%
Gamra, 2003	189	544				[30.7; 38.9]	1.5%
Mahmoud Elsayed, 2017		30				[22.7; 59.4]	1.3%
Malik, 2005	20	76			26.3	[16.9; 37.7]	1.4%
Ostovan, 2014	102	141		_	72.3	[64.2; 79.5]	1.5%
Pourafkari, 2018	288	754		-		[34.7; 41.8]	1.5%
Rizvi, 2014	6	57				[4.0; 21.5]	1.4%
Sabry, 2017	22	50	-			[30.0; 58.7]	1.4%
Subgroup prevalence Heterogeneity: I ² = 96.6%, t ² = 0.033	87, p < 0.0001	2361	~	-	33.6	[23.0; 45.2]	14.2%
Europe							
Acartürk, 1997	77	168		_ 	45.8	[38.1; 53.7]	1.5%
Augestad, 1999	105	296	-	-	35.5	[30.0; 41.2]	1.5%
Bouleti, 2014	408	1024		+		[36.8; 42.9]	1.5%
Boyarchuk, 2019	12	35				[19.1; 52.2]	1.3%
Cruz-Gonzales, 2011	488	1015		-+-		[45.0; 51.2]	1.5%
De Santos, 2004	174	267				[59.1; 70.9]	1.5%
Diker, 1996	433	1110		F		[36.1; 41.9]	1.5%
Hernandez, 1993	198	335				[53.6; 64.4]	1.5%
Kabuçu, 2005	92	210		- -		[37.0; 50.8]	1.5%
Lim, 2001	19 861	26 2773				[52.2; 88.4]	1.2% 1.5%
Lung, 2004 Mrozowska, 1999	102	2773	-	_ —		[29.3; 32.8] [64.2; 79.5]	1.5%
Ozaydin, 2010	34	108	_			[22.9; 41.1]	1.4%
Ozkan, 1998	101	169				[52.0; 67.2]	1.5%
Sarralde, 2010	239	299				[74.9; 84.3]	1.5%
Tomai, 2014	238	527			45.2	[40.9; 49.5]	1.5%
Subgroup prevalence Heterogeneity: I ² = 97.3%, t ² = 0.019	91, ρ < 0.0001	8503		\diamond	50.1	[43.1; 57.1]	23.2%
Multiregion Zuhlke, 2016	586	3343			17.5	[16.3; 18.9]	1.5%
Subgroup prevalence		3343	-		17.5	[16.3; 18.8]	1.5%
South-East Asia Adhikari 2016	16	131	_		12.2	[7.1; 19.1]	1.4%
Arora, 1994	26	600	+		4.3		1.5%
Arora, 2002	702	4850				[13.5; 15.5]	1.5%
Behra, 2018	100	268		_		[31.5; 43.4]	1.5%
Boonyasirinant, 2007	136	260		_ 		[46.0; 58.5]	1.5%
Chockalingam, 2003	590	10000	Ω			[5.4; 6.4]	1.5%
Choudhary, 2003	134	276		→		[42.5; 54.6]	1.5%
Goswami, 2000	61	200				[24.2; 37.4]	1.5%
Islam, 2010	14	50	+	_		[16.2; 42.5]	1.4%
Nachom, 2016	71	185				[31.3; 45.8]	1.5%
Negi, 2018	489	2005	+			[22.5; 26.3]	1.5%
Okubo, 1984	19	205	- +			[5.7; 14.1]	1.5%
Rafle, 2016 Reibbonderi, 2006	109	609	+-			[14.9; 21.2]	1.5%
Rajbhandari, 2006	64 12	200 100				[25.6; 38.9] [6.4; 20.0]	1.5% 1.4%
Ranganavakulu 2016	379	2330	+			[14.8; 17.8]	1.4%
		145	-	<u> </u>		[30.7; 47.1]	1.5%
Sharma, 2015	56		-			[9.1; 33.3]	1.3%
Sharma, 2015 Srimahachota, 2001		47				[17.1; 29.3]	
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence	56 9	47 22461	\diamond		22.9	[, 20.0]	
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Heterogeneity: r ² = 98.9%, τ ² = 0.023	56 9		\$		22.9	[, 20.0]	
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Heterogenelly: I ² = 98.9%, t ² = 0.023 Western Pacific	56 9		*			[16.7; 28.6]	1.5%
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Heterogenetly: I ² = 98.9%, 1 ² = 0.022 Western Pacific Chen, 1998	56 9 82, p < 0.0001	22461	÷		22.3		1.5%
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Hetterrogenety: ⁷ = 98 9%, ² = 0.023 Western Pacific Chen, 1998 Chu, 2001 Hung, 2018	56 9 ^{82, p < 0.0001} 45	22461 202	÷	 	22.3 77.3 60.7	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2]	
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2015	56 9 ^{32, p < 0.0001} 45 92 133 60	22461 202 119 219 293	*	 	22.3 77.3 60.7 20.5	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6]	1.4% 1.5% 1.5%
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2015 Kim, 2018	56 9 45 92 133 60 304	22461 202 119 219 293 742	+ +	 	22.3 77.3 60.7 20.5 41.0	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6]	1.4% 1.5% 1.5% 1.5%
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2015 Kim, 2018 Lin, 1992	56 9 45 92 133 60 304 83	22461 202 119 219 293 742 110	++	 	22.3 77.3 60.7 20.5 41.0 75.5	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2]	1.4% 1.5% 1.5% 1.5% 1.4%
Sharma, 2015 Srimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2015 Kim, 2018 Lin, 1992 Luo, 2017	56 9 45 92 133 60 304 83 100	22461 202 119 293 742 110 179	++		22.3 77.3 60.7 20.5 41.0 75.5 55.9	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 63.3]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5%
Sharma, 2015 Srimahachda, 2001 Srimahachda, 2001 Subgroup prevalence weterogenety: 7 = 0.023 Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2018 Lin, 1992 Luo, 2017 Russell, 2017	56 9 45 92 133 60 304 83 100 648	22461 202 119 219 293 742 110 179 1594	+ +	 + +	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 63.3] [38.2; 43.1]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5%
Sharma, 2015 Srimahachota, 2001 Srimahachota, 2001 Subgroup prevalence teterogeneity, r ² = 0.023 Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2018 Lin, 1992 Luo, 2017 Shang, 2005	56 9 45 92 133 60 304 83 100 648 9	22461 202 119 219 293 742 110 179 1594 30	+ +	 + + 	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7 30.0	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 83.3] [38.2; 43.1] [14.7; 49.4]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5% 1.5%
Sharma, 2015 Srimahachota, 2001 Vigyvergiya, 2011 Subgroup prevalence waterugenetity: 7 = 98.9%, 7 = 0.022 Wostern Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2018 Kim, 2018 Lin, 1992 Luo, 2017 Russell, 2017 Shimada, 1986	56 9 45 92 133 60 304 83 100 648 9 150	22461 202 119 293 742 110 179 1594 30 301	+ +	+ + + - - -	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7 30.0 49.8	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 63.3] [38.2; 43.1] [14.7; 49.4] [44.0; 55.6]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5% 1.5% 1.3% 1.5%
Ranganayakulu, 2016 Sharma, 2015 Sharma, 2015 Shimahachota, 2001 Vijayvergiya, 2011 Subgroup prevalence Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2018 Kim, 2018 Luo, 2017 Russell, 2017 Shimada, 1986 Zhou, 2008 Subgroup prevalence	56 9 45 92 133 60 304 83 100 648 9 9 150 29	22461 202 119 219 293 742 110 179 1594 30	+ + +	+ + + +	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7 30.0 49.8 31.9	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 83.3] [38.2; 43.1] [14.7; 49.4]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5% 1.5% 1.5% 1.5%
Sharma, 2015 Srimahachda, 2001 Srimahachda, 2001 Subgroup prevalence weterogenesy. 7 = 98.9%, 7 = 0.023 Western Pacific Chen, 1998 Chu, 2001 Hung, 2018 Kim, 2018 Kim, 2018 Lin, 1992 Luo, 2017 Nanag, 2005 Shimada, 1986 Zhou, 2008	56 9 45 92 133 60 304 83 100 648 9 9 150 29	22461 202 119 219 293 742 110 179 1594 30 301 91	+ + + 1 T	+ + + +	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7 30.0 49.8 31.9	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 63.3] [38.2; 43.1] [14.7; 49.4] [44.0; 55.6] [22.5; 42.5]	1.4% 1.5%
Sharma, 2015 Srimahachola, 2001 Viljayvergiya, 2011 Subgroup prevalence deterrogenety: ** = 88.994, ** = 0.023 Western Pacific Chu, 2001 Hung, 2018 Kim, 2015 Kim, 2018 Luo, 2017 Russell, 2017 Shang, 2005 Shimada, 1986 Zhou, 2008 Subgroup prevalence	56 9 45 92 133 60 304 83 100 648 9 150 29	22461 202 119 219 293 742 110 179 1594 30 301 91	- ↓ + + ↓	+ + + + + - +	22.3 77.3 60.7 20.5 41.0 75.5 55.9 40.7 30.0 49.8 31.9 45.9	[16.7; 28.6] [68.7; 84.5] [53.9; 67.2] [16.0; 25.6] [37.4; 44.6] [66.3; 83.2] [48.3; 63.3] [38.2; 43.1] [14.7; 49.4] [44.0; 55.6] [22.5; 42.5]	1.4% 1.5% 1.5% 1.5% 1.4% 1.5% 1.3% 1.3% 1.4% 1.5%

Figure 1: Meta-analysis of the prevalence of atrial fibrillation in rheumatic heart disease by WHO region.

	Prevalence,	95% Confidence	z	Z ·	Heter	Heterogeneity	P Egger	P value	2	Meta-regression
	%	Interval	Studies	Participants	I ² , %	P value	test	comparison	R ² , %	P value for testing of moderators
Global	32.8	28.1-37.7	69	43,059	0.66	<0.0001	<0.0001	I	I	
 Low risk of bias studies 	34.7	25.3-44.8	20	4,819	98.0	< 0.0001	0.257	I	I	
By WHO region									50.4	<0.0001
· Europe	50.1	43.1–57.1	16	8,503	97.3	<0.0001	0.010	<0.0001		
Western Pacific	45.9	36.9–55.1	11	3,880	96.4	<0.0001	0.467			
· Eastern Mediterranean	33.6	23.0-45.2	10	2,361	9.96	<0.0001	0.863			
· Americas	25.1	13.6–38.8	9	644	92.7	<0.0001	0.127			
South-East Asia	22.9	17.1–29.3	18	22,461	98.9	<0.0001	0.001			
· Africa	12.6	8.5-17.5	7	1,867	87.9	<0.0001	0.703			
By level of human development index									57.6	<0.0001
· Very high	45.4	38.7-52.3	18	10,498	97.8	<0.0001	0.120	<0.0001		
· High	41.9	35.5-48.3	22	5,032	95.0	<0.0001	0.760			
· Medium	21.1	16.6-26.0	23	26,006	98.5	<0.0001	0.015			
. Low	13.2	8.2-19.4	9	1,523	89.8	<0.0001	0.092			
By endemic status									24.5	0.0001
· Endemic area	22.8	18.5-27.3	33	28,605	98.5	<0.0001	0.002	<0.0001		
Non-endemic area	42.8	38.1-47.6	36	14,454	96.8	<0.0001	0.205			
By surgery valvular intervention status									3.9	0.025
· Before valvular intervention	28.4	22.7-34.4	40	27,690	0.66	<0.0001	0.0005	0.026		
 After valvular intervention 	39.3	31.8-47.0	29	15,369	98.8	<0.0001	0.008			

(Contd.)

	Prevalence,	95%	z		Heter	Heterogeneity	P Egger	P value	2	Meta-regression
	%	interval	Studies	Participants	I², %	P value	test	comparison	R², %	P value for testing of moderators
Type of valvular interventions										
- Valve replacement	60.3	48.6-71.5	4	603	87.0	<0.0001	0.701	0.0001		
- Valvuloplasty	39.5	30.6-48.8	10	3,122	95.7	<0.0001	0.503			
- Valvulotomy	28.2	19.8–37.3	11	9,467	98.5	<0.0001	0.107			
By age group									35.0	<0.0001
· Children and adolescents	7.6	1.9–16.8	2	496	87.8	0.004	NA	<0.0001		
· Children, adolescents, and adults	20.5	14.2-27.5	15	23,609	99.2	<0.0001	0.073			
· Adolescents and adults	26.2	17.3–36.3	9	1,774	94.2	<0.0001	0.027			
· Adults	39.7	34.4-45.1	46	17,180	98.0	<0.0001	0.021			
By study period									7.0	0.026
· Before 2000	38.2	30.2-46.5	35	27,825	99.4	<0.0001	< 0.0001	0.022		
· 2000 or after	27.3	22.7-32.2	34	15,234	97.4	<0.0001	0.196			
R ² : amount of heterogeneity accounted for; NA: not applicable.	or; NA: not applica	able.								

Author, Year	Cases	Sample				(Cum. Incidence (%)	[95% C.I.]	Weight
A. 1 year									
He, 2016	56	1248	-				4.5	[3.4; 5.8]	34.2%
Kim, 2015	8	293	-				2.7	[1.2; 5.3]	33.1%
Krishnamoorthy, 2003	19	233	- 1				8.2	[5.0; 12.4]	32.7%
Cumulative Incidence		1774	\diamond				4.8	[2.6; 7.5]	100.0%
Heterogeneity: $I^2 = 74.7\%$, τ ² = 0.00	18, <i>p</i> < 0.0	001						
B. 2 years									
Kim, 2015	18	293					6.1	[3.7; 9.5]	49.1%
Zuhlke, 2016	586	3317	+				17.7	[16.4; 19.0]	50.9%
Cumulative Incidence		3610		-			11.4	[2.7; 24.9]	100.0%
Heterogeneity: $I^2 = 97.2\%$, τ ² = 0.01	58, p < 0.0	001						
C. 5 years									
Grigioni, 2002	65	360					18.1	[14.2; 22.4]	33.1%
He, 2016	90	1248	-				7.2	[5.8; 8.8]	34.0%
Kim, 2015	47	293					16.0	[12.0; 20.8]	32.9%
Cumulative Incidence		1901					13.2	[6.3; 22.2]	100.0%
Heterogeneity: $I^2 = 95.2\%$, τ ² = 0.01	03, <i>p</i> = 0.0	192						
D. 10 years									
Grigioni, 2002	173	360					48.1	[42.8; 53.4]	33.1%
He, 2016	167	1248					13.4	[11.5; 15.4]	34.0%
Kim, 2015	101	293					34.5	[29.0; 40.2]	32.9%
Cumulative Incidence		1901					30.8	[10.6; 56.0]	100.0%
Heterogeneity: $I^2 = 99\%$, τ	² = 0.0506	δ, p < 0.000	01 10 20	30	40	50			

Figure 2: Meta-analysis of the incidence of atrial fibrillation in rheumatic heart disease.

performed before 2000 (38.2%, 30.2–46.5) reported higher prevalence compared to studies performed in 2000 or after (27.3%, 22.7–32.2) (**Table 1**).

The global cumulative incidence of AF in patients with RHD was 4.8%, 11.4%, 13.2%, and 30.8% at 1, 2, 5, and 10 years of follow-up, respectively (**Figure 2**).

Prevalence of AF in patients with RHD according to the clinical presentation

Patients with severe valvular disease (30.8%, 95% CI: 24.0–38.2) had higher prevalence of AF compared to those with mild/moderate disease (20.7%; 17.1–24.6), p = 0.009. The prevalence of AF was higher among patients with severe mitral valve disease (30.4%, 23.6–37.6) compared to those with severe aortic valve disease (6.3%; 0.0–26.9), p = 0.038. AF was more frequent in patients with mixed mitral valve disease (65.6%; 42.5–85.4) compared to those with mitral stenosis (33.9%; 28.5–39.4) or mitral regurgitation (21.6%; 7.8–39.7), p = 0.011. The prevalence of AF was not significantly different between patients with various forms of aortic valve disease (**Table 2**). The prevalence of AF in patients who had a valvular intervention (39.3%; 31.8–47.0) was higher compared to patients who did not (28.4%; 22.7–34.4); p = 0.026 (**Table 1**). Among patients who had a valvular intervention, those who had a surgical valve replacement (60.3%, 48.6–71.5) had higher prevalence of AF compared to those who had a valvuloplasty (39.5%, 30.6–48.8) or a valvulotomy (28.2%, 19.8–37.3); p = 0.0001 (Supplementary Figure 4).

Correlates of AF in patients with RHD

In this analysis including 18 studies, we included 1,334 with AF and 2,591 without AF (controls). Patients with AF had higher age compared to those without (MD: 9.5 years; 95% CI: 7.8–11.3; I²: 76.5%) (**Figure 3**), while there was no sex difference (Supplementary Figure 5). Having AF was associated with more advanced stages of heart failure (New York Heart Association classification stage 3 or 4) (OR: 4.4; 95% CI 2.1–9.3; I²: 82.5%) (**Figure 3**), higher tricuspid valve involvement (OR: 4.0; 95% CI: 3.0–5.3; I²: 0.0%) and history of previous stroke or transient ischemic attack (OR: 6.2; 95% CI: 3.4–11.4; I²: 0.0%) (**Figure 3**). Patients with AF had higher concentration of highly sensitive C-reactive protein (MD: 5.5 mg/dL; 95% CI: 1.2–9.8; I²: 90.0%) (**Figure 3**), of N-terminal pro b-type natriuretic peptide (MD: 45.0 pg/mL; 95% CI: 28.8–61.2) (Supplementary Figure 6) and of interleukin-6 (p = 0.05) [94] than those without AF. Systolic pulmonary arterial pressure was higher in patients with AF (MD: 3.6 mmHg; 95% CI: 0.8–6.3; I²: 62.0%) (**Figure 4**) while there was no difference for diastolic pulmonary arterial pressure (Supplementary Figure 7) and for both left ventricle end-systolic and end-diastolic diameters (Supplementary Figures 8 and 9). Patients with AF had higher right

_	
10	
at	
Ę	
ŝ	
Ū.	
- L	
Q	-
IE	
cal	
. Ē	
H	
5	
~	
Ц	
ing	n
Þ	
2	
- ŭ	
acco	
e acco	
e	
SE	
Š	
÷	
1	
Ľ	
ğ	
Je Je	
4	
U.	
ti.	
g	
eum	
Ξ	
G	
Ē	
<u> </u>	
th	
ц:	
~	
_	
uo	
atio	
÷Ē	
صَـ	
Ξ	
ā	_
5	
lod	j
	-
al poi	-
bal poi	-
obal poi	-
plobal pol	
globa	1
ne global poi	
he globa	
on in the globa	
he globa	
on in the globa	
on in the globa	
on in the globa	
on in the globa	
l fibrillation in the globa	
al fibrillation in the globa	
al fibrillation in the globa	
al fibrillation in the globa	
al fibrillation in the globa	n
al fibrillation in the globa	n
atrial fibrillation in the globa	
al fibrillation in the globa	n
e of atrial fibrillation in the globa	n
ice of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
nce of atrial fibrillation in the globa	n
: Meta-analysis of the prevalence of atrial fibrillation in the globa	
2: Meta-analysis of the prevalence of atrial fibrillation in the globa	
e 2: Meta-analysis of the prevalence of atrial fibrillation in the globa	
ble 2: Meta-analysis of the prevalence of atrial fibrillation in the globa	
able 2: Meta-analysis of the prevalence of atrial fibrillation in the globa	
ble 2: Meta-analysis of the prevalence of atrial fibrillation in the globa	

	% dence interval disease 30.8 24.0–38.2 valvular disease 30.8 24.0–38.2 valvular disease 30.8 24.0–38.2 disease 30.8 24.0–38.2 sease 20.7 17.1–24.6 sease 30.4 23.6–37.6 sease 30.4 23.6–37.6 sease 6.3 0.0–26.9 sease 6.3 0.0–26.9 sease 65.6 42.5–85.4			P2, % 98.6 NA 94.7	P value <0.0001 NA		comparison
disease 30.8 24.0–38.2 32 14,049 98.6 <0.0001 0.027 valular disease 20.7 17.1–24.6 1 454 NA NA NA valular disease 20.7 17.1–24.6 1 454 NA NA NA valuar disease 30.4 23.6–37.6 18 3,627 94.7 <0.0001 0.165 sease 6.3 0.0–26.9 2 33 60.5 0.112 NA sease 6.3 0.0–26.9 2 39 60.5 0.112 NA sease 6.3 0.0–26.9 2 39 60.5 0.112 NA sease 6.3 0.0–26.9 2 39 60.5 0.112 NA sease 65.6 42.5–85.4 4 4 449 94.7 <0.0001 0.461 sease 53.9 28.5–39.4 4 4 17,221 98.1 <0.001 0.568 sease 36 0.8 96.6 60.5 0.001 0.568 <th>disease 30.8 24.0–38.2 valvular disease 20.7 17.1–24.6 disease by valve 30.4 23.6–37.6 sease 6.3 0.0–26.9 ease 65.6 42.5–85.4</th> <th></th> <th>14,049 454 3,627 39</th> <th>98.6 NA 94.7</th> <th><0.0001 NA</th> <th></th> <th></th>	disease 30.8 24.0–38.2 valvular disease 20.7 17.1–24.6 disease by valve 30.4 23.6–37.6 sease 6.3 0.0–26.9 ease 65.6 42.5–85.4		14,049 454 3,627 39	98.6 NA 94.7	<0.0001 NA		
disease30.824.0–38.23214,04998.6<0.0010.027valvular disease20.717.1–24.6145.4NANANAdisease by valve20.717.1–24.6145.4NANANAdisease by valve30.423.6–37.6183.62794.7<0.001	disease 30.8 24.0–38.2 valvular disease 20.7 17.1–24.6 disease by valve 30.4 23.6–37.6 sease 6.3 0.0–26.9 sease 65.6 42.5–85.4		14,049 454 3,627 39	98.6 NA 94.7	<0.0001 NA		
valudar disease 20.7 $17.1-24.6$ 1 454 NANANAdisease by valve 30.4 $23.6-37.6$ 18 $3,627$ 94.7 <0.001 0.165 sease 6.3 $0.0-26.9$ 2 39 60.5 0.112 NAsease 6.3 $0.0-26.9$ 2 39 60.5 0.112 0.165 sease 6.3 $0.0-26.9$ 2 39 60.5 0.112 0.165 sease 65.6 $42.5-85.4$ 4 4 $17,221$ 98.1 <0.001 0.461 sease 33.9 $28.5-39.4$ 4 $17,221$ 98.1 <0.001 0.528 sease 33.9 $28.5-39.4$ 4 $17,221$ 98.1 <0.001 0.528 sease 33.9 $28.5-39.4$ 4 $17,221$ 98.1 <0.001 0.528 sease 33.9 $0.8-81$ 1 110 NA NA NA sease 5.0 $0.0-20.2$ 1 20 NA NA NA sease 5.0 $0.0-20.2$ 1 20 NA NA NA sease 5.0 $0.0-20.2$ 1 20 NA NA NA sease 5.0 $0.0-20.2$ 1 20.01 0.01 0.091 0.091 0.091	valvular disease 20.7 17.1–24.6 disease by valve 30.4 23.6–37.6 sease 6.3 0.0–26.9 sease 65.6 42.5–85.4	1 18 2	454 3,627 39	NA 94.7	NA	0.027	00.0
disease by value 30.4 23.6–37.6 18 3,627 94.7 <0.0001	disease by valve 30.4 23.6–37.6 sease 6.3 0.0–26.9 sease 65.6 42.5–85.4	18	3,627 39	94.7		NA	
ease 30.4 23.6–37.6 18 3,627 94.7 <0001 0.165 ease 6.3 0.0–26.9 2 3,627 94.7 <0001 0.165 ease 6.3 0.0–26.9 2 3,99 60.5 0.112 NA ease 65.6 4.2.5–85.4 4 4 449 94.7 <0001 0.461 sease 33.9 28.5–39.4 42 17,221 98.1 <0001 0.461 sease 33.9 28.5–39.4 42 17,221 98.1 <0001 0.262 tion 21.6 7.8–39.7 6 880 96.6 <0001 0.528 ease 3.6 0.8–81 1 110 NA NA NA tion 5.0 0.0–20.2 1 2.0 NA NA NA ease 5.0 0.6–14.4 3 180 5.3 0.091 0.391 0.398	sease 30.4 23.6–37.6 sease 6.3 0.0–26.9 :ase 65.6 42.5–85.4	18 2	3,627 39	94.7			
cease6.30.0-26.923960.50.112NAcase65.642.5-85.44444994.7<00010.461cease65.642.5-39.44217,22198.1<00010.052tion21.67.8-39.7688096.6<00010.052cease3.60.8-8.111110NANAcease3.60.8-8.11110NANAcease3.60.6-10.430.6-10.430.0910.338tion5.00.0-20.2120NANAtion5.80.6-14.4318058.30.0910.338	ease 6.3 0.0–26.9 :ase 65.6 42.5–85.4	2	39		<0.0001	0.165	0.038
ase 65.6 42.5-85.4 4 449 94.7 <0001 0.461 sease 65.6 42.5-39.4 42 17,221 98.1 <0.0001	:ase sease 65.6 42.5–85.4)	60.5	0.112	NA	
cease65.642.5-85.4444994.7<00010.46133.928.5-39.44217,22198.1<0.0001	sease 65.6 42.5–85.4						
33.9 28.5-39.4 42 17,221 98.1 <0.001 0.005 tion 21.6 7.8-39.7 6 880 96.6 <0.001		4	449	94.7	<0.0001	0.461	0.011
21.6 7.8–39.7 6 880 96.6 <0.0001 0.528 3.6 0.8–8.1 1 110 NA NA 5.0 0.0–20.2 1 20 NA NA 5.8 0.6–14.4 3 180 58.3 0.091 0.398	33.9 28.5–39.4	42	17,221	98.1	<0.0001	0.005	
3.6 0.8–8.1 1 110 NA NA 5.0 0.0–20.2 1 20 NA NA 5.8 0.6–14.4 3 180 58.3 0.091 0.398	21.6 7.8–39.7	9	880	96.6	<0.0001	0.528	
ease 3.6 0.8–8.1 1 110 NA NA 5.0 0.0–20.2 1 20 NA NA tion 5.8 0.6–14.4 3 180 58.3 0.091 0.398	Aortic valve disease						
5.0 0.0-20.2 1 20 NA NA tion 5.8 0.6-14.4 3 180 58.3 0.091	3.6	1	110	NA	NA	NA	0.694
5.8 0.6-14.4 3 180 58.3 0.091	5.0	1	20	NA	NA	NA	
	5.8 0.6-14.4	3	180	58.3	0.091	0.398	

Art.38, page8 of 19

Study		l fibrillatio Vean SI		ial fibrilla Mean	ation SD	Mean Difference	MD	95%-CI	Weight
Ancona 2013	20	57.0 12.0	0 81	49.0	11.0		8.0	[2.5; 13.5]	4.7%
Buyukkaya 2008	35	47.8 7.9	9 30	44.3	9.6		3.5	[-0.8; 7.8]	5.8%
Diker 1996	433	43.1 14.4	4 677	33.9	12.8	-	9.2	[7.6; 10.8]	8.3%
Duran 2003	78	48.4 11.8		38.8	17.1		9.6	[4.7; 14.5]	5.2%
Kabukçu 2005	92	45.7 13.4		38.6	12.0		7.1	[3.7; 10.5]	6.6%
Keren 1987 Khatouri 1999	24 113	64.4 8.0 40.3 9.0		43.1 31.4	11.4 9.5		21.3 8.9	[15.7; 26.9]	4.6% 8.0%
Kim 2015	60	62.2 12.		31.4 56.4	9.5 15.2		5.8	[6.9; 10.9] [1.7; 9.9]	8.0% 5.9%
Krishnamoorthy 2003	19	31.1 9.1		18.4	6.5		12.7	[9.5; 15.9]	6.9%
Ozaydin 2010	34	49.0 13.0		47.0	13.0		2.0	[-3.3; 7.3]	4.9%
Pourafkari 2014	200	52.2 11.		39.9	11.6		12.3	[10.4; 14.2]	8.1%
Sabry 2017	22	53.3 6.9		46.8	6.5		6.5	[2.8; 10.2]	6.3%
Selcuk 2007	32 29	52.5 12.4 37.8 6.8		38.4 30.2	10.4		14.1	[9.3; 18.9]	5.3%
Sharma 2017 Srimahachota 2001	29 56	37.8 6.4 42.0 11.3		30.2 32.4	7.6 8.7		7.6 9.6	[3.7; 11.5] [6.3; 12.9]	6.2% 6.8%
Tufano 2009	43	57.0 8.4		42.3	11.4		14.7	[10.9; 18.5]	6.2%
								[]	
Random effects model Heterogeneity: $I^2 = 76.5\%$, τ^2 : Test for overall effect: $z = 10.8$			2531			-5 0 5 10 15 20 25	9.5 30	[7.8; 11.3]	100.0%
Study	Atrial fi Events	brillation N Total	o Atrial fil Events	orillation Total		Odds Ratio	OR	95%-CI	Weight
Diker 1996	128	433	58	677			4.5	[3.2; 6.2]	68.8%
Kabukcu 2005	56		38	118			3.2	[3.2, 0.2]	24.5%
Pourafkari 2014	8		5	403			3.2	[1.1; 9.5]	6.7%
Random effects model Heterogeneity: $l^2 = 0.0\%$, $\tau^2 =$ Test for overall effect: $z = 9.74$				1198		0.2 0.5 1 2 5	4.0	[3.0; 5.3]	100.0%
Study	Atrial fi Events	brillation N Total	o Atrial fib Events	orillation Total		Odds Ratio	OR	95%-Cl	Weight
Kim 2015	7	60	5	233			5.8	[1.9; 18.2]	28.0%
Pourafkari 2014	22	200	8	403			5.9	[2.6; 13.2]	55.6%
Sharma 2017	14	29	2	24			8.4	[1.9; 37.4]	16.4%
Random effects model Heterogeneity: $l^2 = 0.0\%$, $\tau^2 = 1$ Test for overall effect: $z = 5.94$				660		0.1 0.5 1 2 10	6.2	[3.4; 11.4]	100.0%
Study	Atrial fit Events	orillation No Total	Atrial fibr Events	rillation Total		Odds Ratio	OR	95%-CI	Weight
Kabukçu 2005	68	92	22	118			12.0	[6.3; 23.0]	23.9%
Khatouri 1999	36	113	43	359			3.4	[0.3; 23.0]	23.9% 25.7%
Ozaydin 2010	3	34	0	74				[0.8; 330.0]	5.2%
Pourafkari 2014	112	200	152	403			2.1	[1.5; 3.0]	27.5%
Sharma 2017	21	29	10	24			3.5	[1.1; 10.7]	17.7%
Random effects model Heterogeneity: $l^2 = 82.5\%$, $\tau^2 =$ Test for overall effect: $z = 3.85$ (468 0.0001		978	0	.01 0.1 1 10 100	4.4	[2.1; 9.3]	100.0%
Study		al fibrillatio Mean S			tion SD	Mean Difference	MD	95%-CI	Weight
	~ .	0.5 -				:		14.0.0.15	00.5%
Ozaydin 2010 Selcuk 2007 Sharma 2017	34 32 29	9.5 7. 16.7 13. 5.1 1.	4 57	5.8 4.9 2.7	6.1 6.4 1.3		3.7 — 11.8 2.4	[1.0; 6.4] [7.7; 15.9] [1.7; 3.1]	33.5% 28.5% 38.0%
Random effects model Heterogeneity: $I^2 = 90.0\%$, τ^2 Test for overall effect: $z = 2.51$			155			-15 -10 -5 0 5 10	5.5 15	[1.2; 9.8]	100.0%

Figure 3: Panel A. Comparison of mean age between RHD patients with and without AF; **Panel B.** Comparison of tricuspid valve involvement between RHD patients with and without AF; **Panel C.** Comparison of previous cerebrovascular event* between RHD patients with and without AF; **Panel D.** Comparison of advanced heart failure** between RHD patients with and without AF; **Panel E.** Highly sensitive C reactive protein concentration (mg/dL).

atrium pressure (MD: 1.5 mmHg; 95% CI: 1.0–2.0; I²: 0.0%) and higher left atrium diameter (MD: 8.1 mm; 95% CI: 5.5–10.7; I²: 97.3%) (**Figure 4**); whereas they had lower mitral valve area (MD: -0.1; 95% CI: -0.2–0.0; I²: 88.3%) (Supplementary Figure 10) and left ventricle ejection fraction (MD: -2.2; 95% CI: -3.9–-0.5; I²: 88.3%) (**Figure 4**) compared to those without AF.

Only one study reported multivariate data on potential correlates of AF in patients with RHD. The independent correlates of AF included age (odds ratio [OR] = 1.14, 95% CI 1.05–1.25, p = 0.002), left

Study	Atı Total	rial fibril Mean	llation SD	No Atr Total	ial fibril Mean	lation SD		Mean Difference	MD	95%-CI	Weight
oludy	Total	mean	30	Total	mean	30		insul Difference	mD	35 /0-01	Height
Buyukkaya 2008	35	52.4	15.4	30	42.8	17.4			9.6	[1.6; 17.6]	8.3%
Duran 2003	78	51.3	14.1	54	47.0	13.4			4.3	[-0.5; 9.1]	15.0%
Keren 1987	32	40.3	12.1	37	41.8	13.2			-1.5	[-7.5; 4.5]	11.9%
Pourafkari 2014	200	54.1	18.2	403	52.5	19.2			1.6	[-1.6; 4.8]	20.0%
Sabry 2017	22	49.2	3.4	28	47.9	1.9			1.3	[-0.2; 2.8]	25.4%
Selcuk 2007	32	45.8	15.5	57	41.3	17.6			4.5	[-2.8; 11.8]	9.4%
Srimahachota 2001	56	59.9	26.0	89	47.4	16.8			12.5	[5.5; 19.5]	10.0%
Random effects model Heterogeneity: $l^2 = 62.0\%$, τ^2 Test for overall effect: $z = 2.5\%$	² = 7.1812,		0	698				-10 0 10	3.6	[0.8; 6.3]	100.0%
Study	Atri Total			No Atri Total	al fibrill Mean			Mean Difference	MD	95%-CI	Weight
,											
Kabukçu 2005	92	7.6	3.3	118	6.3	1.9			1.3	[0.6; 2.0]	48.0%
Keren 1987	32			37	5.4				1.7	[0.1; 3.3]	9.1%
Pourafkari 2014	200			403	9.3				1.7	[0.9; 2.5]	42.9%
	200	11.0	0.2	400	0.0	4.0			1.7	[0.0, 2.0]	12.0 /0
Random effects model Heterogeneity: $l^2 = 0.0\%$, $\tau^2 =$ Test for overall effect: $z = 6.0$	= 0, <i>p</i> = 0.	7286		558			-3	-2 -1 0 1 2 3	1.5	[1.0; 2.0]	100.0%
Study	Atr Total	ial fibril Mean	lation SD	No Atri Total	al fibrilla Mean	ation SD		Mean Difference	MD	95%-CI	Weight
Buyukkaya 2008	35	57.4	7.7	30	46.5	5.7			10.9	[7.6; 14.2]	6.8%
Diker 1996	433	57.0	12.0	677	40.0	7.0			17.0	[15.9; 18.1]	7.5%
Duran 2003	78	57.0	10.0	54	49.0	6.0			8.0	[5.0; 11.0]	6.9%
Kabukçu 2005	92	54.0	13.3	118	41.8	8.2		T	12.2	[9.3; 15.1]	6.9%
Keren 1987	24	37.6	10.8	28	27.8	7.7			9.8	[4.8; 14.8]	5.9%
Khatouri 1999	113	53.3	10.3	359	46.5	8.5			6.8	[4.9; 8.7]	7.3%
Kim 2015	60	51.7	7.2	233	44.8	7.9			6.9	[4.7; 9.1]	7.2%
Ozaydin 2010	34	43.3	3.7	74	38.9	2.8			4.4	[3.1; 5.7]	7.5%
Pourafkari 2014	200	51.1	0.9	403	45.0				6.1	[5.2; 7.0]	7.5%
Sabry 2017	200	48.4	1.7	28	45.0	0.3			3.3		7.6%
Selcuk 2007			6.4		43.1	4.3			5.6	[2.6; 4.0]	
	32	49.1		57						[3.4; 7.8]	7.2%
Srimahachota 2001	56	49.2	6.1	89	45.3				3.9	[2.1; 5.7]	7.3%
Tufano 2009	43	58.3	7.4	87	43.9	7.4			14.4	[11.7; 17.1]	7.0%
Unverferth 1983	6	56.0	2.0	7	51.0	2.0			5.0	[2.8; 7.2]	7.2%
Random effects model Heterogeneity: $l^2 = 97.3\%$, $\tau^2 =$ Test for overall effect: $z = 6.04$	= 23.5835		01	2244			-5	0 5 10 15 20	8.1	[5.5; 10.7]	100.0%
	Atria	l fibrilla	tion	No Atri	al fibrilla	ation					
Study	Total	Mean	SD		Mean	SD		Mean Difference	MD	95%-C	Weight
								· _			
Ancona 2013	20	58.0	4.0	81	58.0	4.0			0.0	[-2.0; 2.0]	
3uyukkaya 2008	35	65.0	5.0	30	66.0	4.0			-1.0	[-3.2; 1.2]	
Duran 2003	78	57.0	8.9	54	60.1	11.9			-3.1	[-6.6; 0.4]	8.4%
() 004E	60	61.9	7.7	233	61.8	8.0			0.1	[-2.2; 2.4]	
	19	62.7	5.3	189	68.4	8.3			-5.7	[-9.5; -1.9]	7.9%
	34	65.0	1.4	74	65.0	1.9			0.0	[-0.7; 0.7]	
Krishnamoorthy 2003		50.1	5.8	403	53.9	4.6		- 1	-3.8	[-4.7; -2.9]	
Krishnamoorthy 2003 Dzaydin 2010				28	62.4	2.2			-8.6	[-11.6; -5.6]	
Krishnamoorthy 2003 Dzaydin 2010 Pourafkari 2014	200		7.7						0.0		
Krishnamoorthy 2003 Dzaydin 2010 Pourafkari 2014 Sabry 2017	200 22	53.8	7.7 7.6			88			03		
Krishnamoorthy 2003 Dzaydin 2010 Pourafkari 2014 Sabry 2017 Selcuk 2007	200 22 32	53.8 65.2	7.6	57	64.9	8.8 12.0			0.3	[-3.3; 3.9]	8.2%
Krishnamoorthy 2003 Dzaydin 2010 Pourafkari 2014 Sabry 2017 Selcuk 2007	200 22	53.8				8.8 12.0			0.3 -1.9		8.2%
Kim 2015 Krishnamoorthy 2003 Dzaydin 2010 Pourafkari 2014 Sabry 2017 Selcuk 2007 Tufano 2009 Random effects model Heterogeneity: / ² = 88.3%, τ ² =	200 22 32 43 543	53.8 65.2 56.4	7.6 6.0	57	64.9					[-3.3; 3.9]	8.2% 7.9%

Figure 4: Panel A. Comparison of systolic pulmonary artery pressure between RHD patients with and without AF; **Panel B.** Comparison of right atrium pressure between RHD patients with and without AF; **Panel C.** Comparison of left atrium diameter between RHD patients with and without AF; **Panel D.** Comparison of left ventricle ejection fraction between RHD patients with and without AF.

ventricle systolic ejection fraction (OR = 0.92, 95% CI 0.87-0.97, p = 0.003), left atrium strain (OR = 7.53, 95% CI 4.47-12.69 p < 0.001), and right atrial pressure (OR = 1.09, 95% CI 1.02-1.17, p = 0.01) [10].

Discussion

AF is a major complication of RHD, and a predictor of adverse outcomes such as stroke, peripheral embolism, heart failure and death [72]. This review shows that AF is very prevalent in RHD patients, affecting about one-third of them. Its incidence increases over time from ~5% at one year following diagnosis of RHD, to ~13% and ~31% at 5 years and 10 years, respectively. This prevalence of AF appears to be higher in RHD than in some other structural heart diseases such as cardiomyopathies. For instance, in a recent review, we estimated that AF affects 20%–25% of patients with dilated, hypertrophic and ischemic cardiomyopathies. In sub-Saharan Africa for instance, rheumatic heart disease is one of the leading causes of AF, reported in 20%–35% of cases in most series [102].

The prevalence of AF in RHD increases with the country's development index; it is lowest in Africa and South-East Asia, where RHD is endemic. This is a striking finding which needs further investigation. Indeed, based on the results of studies done in the general population, there is a belief that AF is less frequent in sub-Saharan Africa compared to other regions [103]. However, this prevalence is probably underestimated as many cases of paroxysmal AF are missed by a single 12-lead electrocardiography, in these resource-restrained settings where Holter electrocardiography is only available in few tertiary care facilities [104]. In addition, in the absence of universal health coverage in most of these countries, 12-lead electrocardiography cannot always be repeated when necessary due to unaffordability. In this perspective, this presumed low detection rate of AF in RHD patients in developing countries is concerning, because undiagnosed AF is a missed opportunity for treatment and prevention of complications. However, further studies are needed to explore the reasons explaining the association between country human development index, geographic localization and the prevalence of AF in RHD patients as shown in this study.

This review shows that age is the most consistent correlates of AF across studies. We found that the prevalence of AF was higher in adults compared to children, and that the mean age of RHD patients with AF was higher than that of patients in sinus rhythm. Ageing is known as the strongest risk factor for AF in the general population, with the prevalence of AF increasing from 2% to 5% and 10% in people aged \geq 40 years, \geq 65 years, and \geq 80 years, respectively [105]. Specifically, the association of increased prevalence of AF with age in RHD patients can be attributed to age-related increment in the severity of valvular lesions and a longer duration of inflammatory processes leading to increased chambers remodeling and eventually higher rates of AF. This is coupled with the AF risk inherent to ageing per se and to other co-morbidities. Indeed, although only demonstrated in one study, classic risk factors for AF such as diabetes mellitus, hypertension, and high BMI were significantly associated with AF in patients with rheumatic mitral stenosis [92].

Chronic inflammation is central in the pathogenesis of rheumatic heart disease. During acute rheumatic fever, an autoimmune response to untreated group A streptococcal pharyngitis causes inflammation and subsequently fibrosis of the heart valves. An association between inflammation and AF has been established [106]. The inflammation in the context of rheumatic carditis is therefore thought to be directly involved in the occurrence of AF in RHD [9, 93, 97]. This is suggested by inflammatory changes in rheumatic valve tissue and elevated plasma levels of CRP and circulating adhesion molecules in patients with rheumatic mitral stenosis [107–109]. AF might result from the myocardial disarrays caused by inflammatory and fibrotic changes in the atrial conduction system [90]. Few inflammatory markers including IL-6 and Hs-CRP correlate well with the presence of AF [9, 94, 98], and therefore have a potential clinical utility in AF prediction in patients with RHD, especially paroxysmal AF. NT-proBNP, a surrogate of left ventricular end-diastolic pressure, has also been identified as a possible predictor of AF but with a much lower correlation [31].

Left atrium enlargement (LAE) was associated with AF in our unadjusted data meta-analysis, and was an established independent predictor in multivariate analysis in several individual studies. In their study, Kim et al. found that left atrial dimension \geq 47 mm predicted new-onset AF, as well as the composite of incident AF, systemic embolism and all-cause mortality in patients with rheumatic mitral stenosis in sinus rhythm [8]. Furthermore, a study suggested that LAE is associated with anticoagulation failure in AF patients with rheumatic mitral stenosis in sinus rhythm ischemic stroke [110]. All these data support the practice of anticoagulation in patients with rheumatic mitral stenosis in sinus rhythm but with left atrial diameter \geq 50 mm or left atrial thrombus [86]. AF was more frequent in severe RHD disease, and consequently more in patients who had a valvular intervention as those patients had severe disease. Moreover, the prevalence of AF was much higher in mitral valve disease compared to aortic valve disease, because mitral valve disease, especially stenosis, directly causes LAE and subsequently AF.

The association of AF with advanced heart failure as indicated by NYHA III/IV functional classes is in keeping with the fact that AF is in one hand a factor of progression or decompensation to heart failure, and in the other hand a complication of heart failure in general and specifically in RHD [111]. Furthermore, for most hemodynamic parameters there was no significant difference between patients with AF and those in sinus rhythm. This is consistent with the idea that the poorer effort tolerance in patients with AF might be mainly due to an increase in ventricular rate and left atrial pressure during exercise [88].

The high incidence of AF in patients with RHD, and mainly those with rheumatic mitral stenosis, highlights the need for guidelines on the timing of clinical and electrocardiographic screening of AF in this population. Furthermore, because the duration of AF reduces the chances of sustained cardioversion success [112], a predictive tool to identify patients at high risk of developing AF might help in early detection and treatment. The likelihood of developing AF might also be considered in decision-making regarding the appropriate time of valvular intervention in patients with RHD [10, 92, 93]. Indeed, a recent study in patients with degenerative mitral regurgitation indicated that detection of AF, even paroxysmal, should trigger prompt consideration for surgery [113].

The high prevalence of AF in RHD patients emphasizes the high need for oral anticoagulation in this population. Oral anticoagulants have proven efficacy in preventing systemic stroke and peripheral embolism. Unfortunately, the uptake of anticoagulation by eligible RHD patients is suboptimal. For instance, the proportion of eligible patients receiving oral anticoagulants was 70% in the REMEDY study [86] and 77.8% in the HP-RHD registry [72]. Furthermore, according to the REMEDY study baseline data, only 37% of RHD patients with AF and on warfarin had 1–3 INR tests done in the last 6 months and 22.2% had a therapeutic INR (2.0–3.0 range) at enrollment [86]. However, the utilization of oral anticoagulant is higher in rheumatic valvular AF compared to non-valvular AF as reported in the RELY-AF registry where 58% of eligible patients were on warfarin [114].

This study has few limitations. There was marked heterogeneity across studies; we found that this heterogeneity was mainly explained by countries' level of development, distribution across WHO regions, age groups, and RHD endemic profile of the countries. There was likely an underestimation of paroxysmal AF as most of the studies used a single 12-lead ECG recording. Furthermore, the data to estimate the incidence of AF in patients with RHD only came from few studies, limiting the accuracy of these estimates. Finally, our meta-analysis of the correlates of AF in RHD included unadjusted data. Therefore, confounders were not excluded, except in one study in which regression analysis was performed. Nevertheless, this study is the first to provide a comprehensive summary and estimation of the prevalence and incidence of AF in the patients with RHD, and to explore its correlates using strong statistical methods.

Conclusion

This study shows that about one-third of patients with RHD have AF, with an incidence which almost triple every five years after diagnosis. The main correlates of AF include age, mitral valve disease, especially in the presence of associated tricuspid involvement, left atrium enlargement, right atrium pressure, and systolic pulmonary arterial pressure. AF is also associated with advanced heart failure and thromboembolism in patients with RHD. These findings call for guidelines on the timing of clinical and electrocardiographic screening of AF in this population, and for improved utilization of oral anticoagulation in those with AF. Furthermore, a predictive tool to identify patients at high risk of developing AF might help for early detection and treatment, as well as for decision-making regarding timing for valvular intervention.

Data Accessibility Statemnt

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Additonal Files

The additional files for this article can be found as follows:

- Supplementary Table 1. Search strategy in EMBASE. DOI: https://doi.org/10.5334/gh.807.s1
- **Supplementary Table 2.** Summarized study characteristics. DOI: https://doi.org/10.5334/gh.807.s2
- **Supplementary Table 3.** Individual characteristics of included studies. DOI: https://doi. org/10.5334/gh.807.s3
- · Supplementary Table 4. MOOSE checklist. DOI: https://doi.org/10.5334/gh.807.s4
- Supplementary Figure 1. Studies selection. DOI: https://doi.org/10.5334/gh.807.s5
- **Supplementary Figure 2.** Leave-one-out sensitivity analysis of the global prevalence of atrial fibrillation in rheumatic heart disease. DOI: https://doi.org/10.5334/gh.807.s6

- **Supplementary Figure 3.** Funnel plot for publication bias. DOI: https://doi.org/10.5334/gh.807.s7
- **Supplementary Figure 4.** Meta-analysis of the prevalence of atrial fibrillation in patients in rheumatic heart disease who had valvular interventions. DOI: https://doi.org/10.5334/gh.807.s8
- **Supplementary Figure 5.** Comparison of proportion of female sex between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/gh.807.s9
- **Supplementary Figure 6.** Comparison N-terminal pro b-type natriuretic peptide concentration between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/ gh.807.s10
- **Supplementary Figure 7.** Comparison of mean diastolic pulmonary arterial pressure (mmHg) between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/gh.807.11
- **Supplementary Figure 8.** Comparison of left ventricle end-systolic diameter between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/gh.807.s12
- **Supplementary Figure 9.** Comparison of left ventricle end-diastolic diameter between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/gh.807.s13
- **Supplementary Figure 10.** Comparison of mitral valve area (cm²) between patients with and without atrial fibrillation in RHD. DOI: https://doi.org/10.5334/gh.807.s14

Competing Interests

The authors have no competing interests to declare.

Author Contributions

Conception and Design: JJN. Search strategy: JJN, JJB. Studies selection: JJN, JJB. Data extraction: JJN, JJB, UFN, ALN, JRN, AN. Data synthesis: JJB, JJN. Data interpretation: JJN, JJB. Manuscript drafting: JJN, JJB. Manuscript revision: JJN, JJB, UFN, ALN, JRN, AN. Approval of the final manuscript: JJN, JJB, UFN, ALN, JRN, AN. Guarantor of the review: JJN.

References

- 1. Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. *Lancet.* 2012; 379: 953–964. DOI: https://doi.org/10.1016/S0140-6736(11)61171-9
- 2. Naghavi M, Wang HD, Lozano R, Davis A, Liang XF, Zhou MG, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2015; 385: 117–171. DOI: https://doi.org/10.1016/S0140-6736(14)61682-2
- 3. Horstkotte D, Niehues R, Strauer BE. Pathomorphological aspects, aetiology, and natural history of acquired mitral valve stenosis. *Eur Heart J.* 1991; 12(Suppl B): 55–60. DOI: https://doi.org/10.1093/eurheartj/12.suppl_B.55
- 4. Leon MN, Harrell LC, Simosa HF, et al. Mitral balloon valvotomy for patients with mitral stenosis in atrial fibrillation: Immediate and long-term results. *J Am Coll Cardiol*. 1999; 34: 1145–52. DOI: https://doi.org/10.1016/S0735-1097(99)00310-1
- 5. Nair KK, Pillai HS, Thajudeen A, et al. Immediate and long-term results following balloon mitral valvotomy in patients with atrial fibrillation. *Clin Cardiol*. 2012; 35: E35–9. DOI: https://doi.org/10.1002/ clc.22068
- Enriquez-Sarano M, Tajik AJ, Schaff HV, et al. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. *Circulation*. 1994; 90: 830–837. DOI: https://doi. org/10.1161/01.CIR.90.2.830
- 7. **Alexiou C, Doukas G,** et al. The effect of preoperative atrial fibrillation on survival following mitral valve repair for degenerative mitral regurgitation. *Eur J Cardiothorac Surg.* 2007; 31: 586–591. DOI: https://doi.org/10.1016/j.ejcts.2006.12.039
- 8. Kim HJ, Cho GY, Kim YJ, Kim HK, Lee SP, Kim HL, et al. Development of atrial fibrillation in patients with rheumatic mitral valve disease in sinus rhythm. *Int J Cardiovasc Imaging*. 2015; 31: 735–742. DOI: https://doi.org/10.1007/s10554-015-0613-2
- 9. **Ozaydin M, Turker Y, Varol E, Alaca S, Erdogan D, Yilmaz N,** et al. Factors associated with the development of atrial fibrillation in patients with rheumatic mitral stenosis. *Int J Cardiovasc Imaging*. 2010; 26(5): 547–552. DOI: https://doi.org/10.1007/s10554-010-9609-0

- Pourafkari L, Ghaffari S, Bancroft GR, Tajlil A, Nader ND. Factors associated with atrial fibrillation in rheumatic mitral stenosis. *Asian Cardiovasc Thorac Ann*. 2015; 23(1): 17–23. DOI: https://doi. org/10.1177/0218492314530134
- 11. **Munn Z, Moola S, Lisy K,** et al. Systematic reviews of prevalence and incidence. In Aromataris E & Munn Z (Eds.) Joanna Briggs Institute reviewer's manual. *Adelaide, South Australia: The Joanna Briggs Institute*; 2017; 5.1–5.5.11.
- 12. **Stroup DF, Berlin JA, Morton SC,** et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. 2000; 283(15): 2008–2012. DOI: https://doi.org/10.1001/jama.283.15.2008
- 13. McGowan J, Sampson M, Salzwedel DM, et al. PRESS peer review of electronic search strategies: 2015 guideline statement. *J Clin Epidemiol.* 2016; 75: 40–6. DOI: https://doi.org/10.1016/j. jclinepi.2016.01.021
- 14. **Munn Z, Moola S, Lisy K,** et al. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. *International Journal of Evidence-Based Healthcare*. 2015; 13: 147–53. DOI: https://doi.org/10.1097/XEB.000000000000054
- 15. Barendregt JJ, Doi SA, Lee YY, et al. Meta-analysis of prevalence. *J Epidemiol Community Health.* 2013; 67: 974–8. DOI: https://doi.org/10.1136/jech-2013-203104
- 16. **Cochran WG.** The combination of estimates from different experiments. *Biometrics*. 1954; 10: 101–29. DOI: https://doi.org/10.2307/3001666
- 17. **Higgins JP, Thompson SG.** Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine*. 2002; 21: 1539–58. DOI: https://doi.org/10.1002/sim.1186
- 18. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed)*. 1997; 315: 629–34. DOI: https://doi.org/10.1136/bmj.315.7109.629
- 19. Seagroatt V, Stratton I. Bias in meta-analysis detected by a simple, graphical test. Test had 10% false positive rate. *BMJ (Clinical research ed)*. 1998; 316: 470–1.
- 20. **DerSimonian R, Laird N.** Meta-analysis in clinical trials revisited. *Contemporary Clinical Trials*. 2015; 45: 139–45. DOI: https://doi.org/10.1016/j.cct.2015.09.002
- 21. Abbas S, Riaz W, Khan JF, Nassery S, Iqbal M, Waheed A. Amiodarone vs digoxin in the treatment of atrial fibrillation in postoperative rheumatic cardiac valvular patients. *J Pak Med Assoc.* 2016; 66(9):1098–1101.
- 22. **De Santo LS, Romano G, Della Corte A, Tizzano F, Petraio A, Amarelli C,** et al. Mitral mechanical replacement in young rheumatic women: Analysis of long-term survival, valve-related complications, and pregnancy outcomes over a 3,707-patient-year follow-up. *J Thorac Cardiovasc Surg.* 2005; 130(1): 13–9. DOI: https://doi.org/10.1016/j.jtcvs.2004.11.032
- 23. Lin SL, Hsu TL, Liou JY, Chen CH, Chang MS, Chiang HT, et al. Usefulness of transesophageal echocardiography for the detection of left atrial thrombi in patients with rheumatic heart disease. *Echocardiography*. Mar 1992; 9(2): 161–8. DOI: https://doi.org/10.1111/j.1540-8175.1992. tb00454.x
- 24. Ozkan M, Kaymaz C, Kirma C, Civelek A, Cenal AR, Yakut C, et al. Correlates of left atrial thrombus and spontaneous echo contrast in rheumatic valve disease before and after mitral valve replacement. *Am J Cardiol.* 1 Nov 1998; 82(9): 1066–70. DOI: https://doi.org/10.1016/S0002-9149(98)00556-6
- 25. Chen CR, Cheng TO, Chen JY, Huang YG, Huang T, Zhang B. Long-term results of percutaneous balloon mitral valvuloplasty for mitral stenosis: A follow-up study to 11 years in 202 patients. *Cathet Cardiovasc Diagn*. Feb 1998; 43(2): 132–9. DOI: https://doi.org/10.1002/(SICI)1097-0304(199802)43:2<132::AID-CCD5>3.0.CO;2-B
- 26. **Cruz-Gonzalez I, Jneid H, Sanchez-Ledesma M, Cubeddu RJ, Martin-Moreiras J, Rengifo-Moreno P,** et al. Difference in outcome among women and men after percutaneous mitral valvuloplasty. *Catheter Cardiovasc Interv.* 1 Jan 2011; 77(1): 115–20. DOI: https://doi.org/10.1002/ccd.22721
- 27. Esteves WAM, Lodi-Junqueira L, Soares JR, Sant'Anna Athayde GR, Goebel GA, Carvalho LA, et al. Impact of percutaneous mitral valvuloplasty on left ventricular function in patients with mitral stenosis assessed by 3D echocardiography. *Int J Cardiol.* 1 Dec 2017; 248: 280–5. DOI: https://doi. org/10.1016/j.ijcard.2017.06.078
- 28. Kim D, Chung H, Nam J-H, Park DH, Shim CY, Kim J-S, et al. Correlates of long-term outcomes of percutaneous mitral valvuloplasty in patients with rheumatic mitral stenosis. *Yonsei Med J.* 1 Mar 2018; 59(2): 273–8. DOI: https://doi.org/10.3349/ymj.2018.59.2.273

- 29. Lim E, Barlow CW, Hosseinpour AR, Wisbey C, Wilson K, Pidgeon W, et al. Influence of atrial fibrillation on outcome following mitral valve repair. *Circulation*. 18 Sep 2001; 104(12 Suppl 1): 159–63. DOI: https://doi.org/10.1161/hc37t1.094813
- Ostovan M, Aslani A, Abounajmi S, Razazi V. Mitral valve restenosis after percutaneous transmitral valvuloplasty, role of continuous inflammation. *J Cardiovasc Thorac Res.* 2014; 6(3): 191–5. DOI: https://doi.org/10.15171/jcvtr.2014.010
- 31. Ranganayakulu KP, Rajasekhar D, Vanajakshamma V, Santosh Kumar C, Vasudeva Chetty P. N-terminal-pro-brain natriuretic peptide, a surrogate biomarker of combined clinical and hemodynamic outcomes following percutaneous transvenous mitral commissurotomy. *J Saudi Heart Assoc*. Apr 2016; 28(2): 81–8. DOI: https://doi.org/10.1016/j.jsha.2015.07.002
- 32. Sancho M, Medina A, Suárez de Lezo J, Hernandez E, Pan M, Coello I, et al. Factors influencing progression of mitral regurgitation after transarterial balloon valvuloplasty for mitral stenosis. *Am J Cardiol.* 15 Sep 1990; 66(7): 737–40. DOI: https://doi.org/10.1016/0002-9149(90) 91140-2
- Shang YP, Lai L, Chen J, Zhang F, Wang X. Effects of percutaneous balloon mitral valvuloplasty on plasma B-type natriuretic peptide in rheumatic mitral stenosis with and without atrial fibrillation. *J Heart Valve Dis.* Jul 2005; 14(4): 453–9.
- 34. **Tomai F, Gaspardone A, Versaci F, Ghini AS, Altamura L, De Luca L**, et al. Twenty-year follow-up after successful percutaneous balloon mitral valvuloplasty in a large contemporary series of patients with mitral stenosis. Int J Cardiol. 20 Dec 2014; 177(3): 881–5. DOI: https://doi.org/10.1016/j. ijcard.2014.10.040
- 35. **Guteta S, Yadeta D, Azazh A, Mekonnen D.** Cardiac surgery for valvular heart disease at a referral hospital in ethiopia: A review of cases operated in the last 30 years. *Ethiop Med J.* Apr 2016; 54(2): 49–55.
- Russell EA, Tran L, Baker RA, Bennetts JS, Brown A, Reid CM, et al. A review of outcome following valve surgery for rheumatic heart disease in Australia. *BMC Cardiovasc Disord*. 23 Sep 2015; 15: 103. DOI: https://doi.org/10.1186/s12872-015-0094-1
- Adhikari CM, Malla R, Rajbhandari R, Shakya U, Sharma P, Shrestha N, et al. Percutaneous transvenous mitral commissurotomy in juvenile mitral stenosis. *Cardiovasc Diagn Ther*. Feb 2016; 6(1): 20–4.
- Augestad KM, Martyshova K, Martyshov S, Foederov B, Lie M. Tidsskr Den Nor Laegeforening Tidsskr Prakt Med Ny Raekke. [Rheumatic fever and rheumatic heart disease in Northwest Russia]. 20 Apr 1999; 119(10): 1456–9.
- 39. Bouleti C, Iung B, Himbert D, Messika-Zeitoun D, Brochet E, Garbarz E, et al. Relationship between valve calcification and long-term results of percutaneous mitral commissurotomy for rheumatic mitral stenosis. *Circ Cardiovasc Interv*. Jun 2014; 7(3): 381–9. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.113.000858
- 40. Hernández Antolín RA, Macaya de Miguel C, Bañuelos de Lucas C, Alfonso Manterola F, Goicolea Ruigómez J, Iñíguez Romo A, et al. [Percutaneous mitral valvotomy. The experience of the Hospital Universitario San Carlos of Madrid]. *Rev Esp Cardiol.* Jun1993; 46(6): 352–63.
- 41. **Mahmoud Elsayed HM, Hassan M, Nagy M, Amin A, Elguindy A, Wagdy K,** et al. A novel method to measure mitral valve area in patients with rheumatic mitral stenosis using three-dimensional transesophageal echocardiography: Feasibility and validation. *Echocardiogr Mt Kisco N*. 2018; 35(3): 368–74. DOI: https://doi.org/10.1111/echo.13786
- 42. Malik A, Khan RA, Ali Shah SM, Awan AA, Aslam S, Rehman K. Should we say good bye to closed mitral commissurotomy in our setup. *J Postgrad Med Inst.* Apr 2005; 19(2): 144–8.
- 43. Rajbhandari R, Kc MB, Bhatta Y, Regmi S, Malla R, Rajbhandari S, et al. Percutaneous transvenous mitral commissurotomy. *Nepal Med Coll J NMCJ*. Sep 2006; 8(3): 182–4.
- 44. **Sharma J, Goel PK, Pandey CM, Awasthi A, Kapoor A, Tewari S,** et al. Intermediate outcomes of rheumatic mitral stenosis post-balloon mitral valvotomy. *Asian Cardiovasc Thorac Ann*. Oct 2015; 23(8): 923–30. DOI: https://doi.org/10.1177/0218492315598240
- 45. Souza LR, Brandão CM de A, Pomerantzeff PMA, Leite Filho OA, Cardoso LF, Stolf NAG. Longterm evolution of mitral commissurotomy in rheumatic patients with low echocardiographic score. *Rev Bras Cir Cardiovasc Orgao Of Soc Bras Cir Cardiovasc*. Sep 2011; 26(3): 380–5. DOI: https://doi. org/10.5935/1678-9741.20110012

- 46. Srimahachota S, Boonyaratavej S, Wannakrairoj M, Udayachalerm W, Sangwattanaroj S, Ngarmukos P, et al. Percutaneous transvenous mitral commissurotomy: Hemodynamic and initial outcome differences between atrial fibrillation and sinus rhythm in rheumatic mitral stenosis patients. *J Med Assoc Thai*. May 2001; 84(5): 674–80.
- Choudhary SK, Dhareshwar J, Govil A, Airan B, Kumar AS. Open mitral commissurotomy in the current era: Indications, technique, and results. *Ann Thorac Surg.* Jan 2003; 75(1): 41–6. DOI: https:// doi.org/10.1016/S0003-4975(02)04276-5
- 48. Luo T, Han J, Meng X. Features of rheumatic mitral valves and a grading system to identify suitable repair cases in China. *J Thorac Dis.* Sep 2017; 9(9): 3138–47. DOI: https://doi.org/10.21037/jtd.2017.08.121
- 49. **Russell EA, Walsh WF, Tran L, Tam R, Reid CM, Brown A,** et al. The burden and implications of preoperative atrial fibrillation in Australian heart valve surgery patients. *Int J Cardiol.* 15 Jan 2017; 227: 100–5. DOI: https://doi.org/10.1016/j.ijcard.2016.11.070
- 50. Sarralde JA, Bernal JM, Llorca J, Pontón A, Diez-Solorzano L, Giménez-Rico JR, et al. Repair of rheumatic tricuspid valve disease: Correlates of very long-term mortality and reoperation. *Ann Thorac Surg.* Aug 2010; 90(2): 503–8. DOI: https://doi.org/10.1016/j.athoracsur.2010.03.105
- 51. Acartürk E, Usal A, Demir M, Akgül F, Ozeren A. Thromboembolism risk in patients with mitral stenosis. *Jpn Heart J.* Sep 1997; 38(5): 669–75. DOI: https://doi.org/10.1536/ihj.38.669
- 52. Adhikari KP, Malla R, Limbu D, Rauniyar BK, Regmi S, Hirachan A, et al. Prevalence of atrial fibrillation in patients attending emergency department of Shahid Gangalal National Heart Centre, Kathmandu, Nepal. *Nepal Heart J*. 12 Feb 2016; 13(1): 1–4. DOI: https://doi.org/10.3126/njh.v13i1.14536
- 53. Arora R, Kalra GS, Murty GS, Trehan V, Jolly N, Mohan JC, et al. Percutaneous transatrial mitral commissurotomy: Immediate and intermediate results. *J Am Coll Cardiol*. May 1994; 23(6): 1327–32. DOI: https://doi.org/10.1016/0735-1097(94)90374-3
- 54. **Behra SS, Anil Kumar AVS, Singh H, Satyanand K.** To study the prevalence of arrhythmias in valvular heart disease and their correlation with echocardiographic variables. *J Clin Diagn Res.* Nov 2018; 12(11): 12–9.
- 55. **Boonyasirinant T, Phankinthongkum R, Komoltri C.** Clinical and echocardiographic parameters and score for the left atrial thrombus formation prediction in the patients with mitral stenosis. *J Med Assoc Thail Chotmaihet Thangphaet*. Nov 2007; 90 (suppl 2): 9–18.
- 56. **Boyarchuk O, Hariyan T, Kovalchuk T.** Clinical features of rheumatic heart disease in children and adults in Western Ukraine. *Bangladesh J Med Sci.* 2019; 18(1): 87–93. DOI: https://doi.org/10.3329/bjms.v18i1.39556
- 57. Chockalingam A, Gnanavelu G, Elangovan S, Chockalingam V. Clinical spectrum of chronic rheumatic heart disease in India. *J Heart Valve Dis*. Sep 2003; 12(5): 577–81.
- 58. Chu PH, Chiang CW, Hsu LA, Lin KH, Cheng NJ, Kuo CT. Low prevalence of coronary arterial disease in Chinese adults with mitral stenosis. *Chang Gung Med J*. Feb 2001; 24(2): 97–102.
- 59. Diker E, Aydogdu S, Ozdemir M, Kural T, Polat K, Cehreli S, et al. Prevalence and correlates of atrial fibrillation in rheumatic valvular heart disease. *Am J Cardiol*. 1 Jan 1996; 77(1): 96–8. DOI: https://doi. org/10.1016/S0002-9149(97)89145-X
- 60. **Doukky R, Abusin SA, Bayissa YA, Kelly RF, Ansari AH.** Rheumatic heart disease in modern urban America: A cohort study of immigrant and indigenous patients in Chicago. *Int J Cardiol.* 15 Jul 2014; 175(1): 178–80. DOI: https://doi.org/10.1016/j.ijcard.2014.04.207
- 61. Drighil A, Ghellab D, Mathewson JW, Ouarga L, Alalou H, Azzouzi L. Immediate impact of successful percutaneous mitral valve commissurotomy on echocardiographic measures of right ventricular contractility. *J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr*. Nov 2012; 25(11): 1245–50. DOI: https://doi.org/10.1016/j.echo.2012.08.010
- 62. Fawzy ME, Shoukri M, Fadel B, Badr A, Al Ghamdi A, Canver C. Long-term (up to 18 years) clinical and echocardiographic results of mitral balloon valvuloplasty in 531 consecutive patients and correlates of outcome. *Cardiology*. 2009; 113(3): 213–21. DOI: https://doi.org/10.1159/000201992
- 63. Gamra H, Betbout F, Ben Hamda K, Addad F, Maatouk F, Dridi Z, et al. Balloon mitral commissurotomy in juvenile rheumatic mitral stenosis: A ten-year clinical and echocardiographic actuarial results. *Eur Heart J*. Jul 2003; 24(14): 1349–56. DOI: https://doi.org/10.1016/S0195-668X(03)00257-4
- 64. **Goswami KC, Yadav R, Bahl VK.** Correlates of left atrial appendage clot: A transesophageal echocardiographic study of left atrial appendage function in patients with severe mitral stenosis. *Indian Heart J*. Dec 2004; 56(6): 628–35.

- 65. **Goswami KC, Yadav R, Rao MB, Bahl VK, Talwar KK, Manchanda SC.** Clinical and echocardiographic correlates of left atrial clot and spontaneous echo contrast in patients with severe rheumatic mitral stenosis: A prospective study in 200 patients by transesophageal echocardiography. *Int J Cardiol.* 31 May 2000; 73(3): 273–9. DOI: https://doi.org/10.1016/S0167-5273(00)00235-7
- 66. Hung JS, Chern MS, Wu JJ, Fu M, Yeh KH, Wu YC, et al. Short- and long-term results of catheter balloon percutaneous transvenous mitral commissurotomy. *Am J Cardiol.* 15 Apr 1991; 67(9): 854–62. DOI: https://doi.org/10.1016/0002-9149(91)90619-V
- 67. Islam A, Azhar MA, Islam MF, Haque MZ, Yeasmin L. A clinical study on the pattern of mitral valvular disease in a peripheral tertiary hospital in Bangladesh. *Cardiovasc J.* 2010; 3(1): 11–21. DOI: https://doi.org/10.3329/cardio.v3i1.6421
- 68. López-Meneses M, Martínez Ríos MA, Vargas Barrón J, Reyes Corona J, Sánchez F. Ten-year clinical and echocardiographic follow-up of patients undergoing percutaneous mitral commissurotomy with Inoue balloon. *Arch Cardiol Mex*. Mar 2009; 79(1): 5–10.
- 69. **Iung B, Nicoud-Houel A, Fondard O, Hafid Akoudad null, Haghighat T, Brochet E,** et al. Temporal trends in percutaneous mitral commissurotomy over a 15-year period. *Eur Heart J.* Apr 2004; 25(8): 701–7. DOI: https://doi.org/10.1016/j.ehj.2004.02.026
- 70. **Melka A.** Rheumatic heart disease in Gondar College of Medial Sciences Teaching Hospital: Sociodemographic and clinical profile. *Ethiop Med J.* Oct 1996; 34(4): 207–16.
- 71. Mrozowska E, Krzemińska-Pakuła M, Rogowski W, Musiał WJ, Zasłonka J. [Atrial fibrillation in mitral valve disease—Risk factors]. *Pol Arch Med Wewn*. Jan 1999; 101(1): 45–53.
- 72. Negi PC, Mahajan K, Rana V, Sondhi S, Mahajan N, Rathour S, et al. Clinical characteristics, complications, and treatment practices in patients with RHD: 6-year results from HP-RHD registry. *Glob Heart.* 2018; 13(4): 267–274.e2. DOI: https://doi.org/10.1016/j.gheart.2018.06.001
- 73. Okello E, Wanzhu Z, Musoke C, Twalib A, Kakande B, Lwabi P, et al. Cardiovascular complications in newly diagnosed rheumatic heart disease patients at Mulago Hospital, Uganda. *Cardiovasc J Afr.* Apr 2013; 24(3): 80–5. DOI: https://doi.org/10.1186/s12872-016-0451-8
- 74. Okello E, Longenecker CT, Beaton A, Kamya MR, Lwabi P. Rheumatic heart disease in Uganda: Correlates of morbidity and mortality one year after presentation. *BMC Cardiovasc Disord*. 2017; 17(1): 20.
- Okubo S, Nagata S, Masuda Y, Kawazoe K, Atobe M, Manabe H. Clinical features of rheumatic heart disease in Bangladesh. *Jpn Circ J*. Dec 1984; 48(12): 1345–9. DOI: https://doi.org/10.1253/ jcj.48.1345
- 76. Pourafkari L, Baghbani-Oskouei A, Aslanabadi N, Tajlil A, Ghaffari S, Sadigh AM, et al. Fine versus coarse atrial fibrillation in rheumatic mitral stenosis: The impact of aging and the clinical significance. *Ann Noninvasive Electrocardiol Off J Int Soc Holter Noninvasive Electrocardiol Inc.* 2018; 23(4): e12540. DOI: https://doi.org/10.1111/anec.12540
- 77. **Sharma SK, Verma SH.** A clinical evaluation of atrial fibrillation in rheumatic heart disease. *J Assoc Physicians India*. Jun 2015; 63(6): 22–5.
- 78. **Shimada S.** A 13-year follow-up study of rheumatic valvular diseases. *Jpn Circ J.* Dec 1986; 50(12): 1304–8. DOI: https://doi.org/10.1253/jcj.50.1304
- 79. **Sims JB, Roberts WC.** Comparison of findings in patients with versus without atrial fibrillation just before isolated mitral valve replacement for rheumatic mitral stenosis (with or without associated mitral regurgitation). *Am J Cardiol.* 1 Apr 2006; 97(7): 1035–8. DOI: https://doi.org/10.1016/j.amjcard.2005.11.023
- 80. **Sliwa K, Mocumbi AO.** Forgotten cardiovascular diseases in Africa. *Clin Res Cardiol Off J Ger Card Soc.* Feb 2010; 99(2): 65–74. DOI: https://doi.org/10.1007/s00392-009-0094-1
- Tadele H, Mekonnen W, Tefera E. Rheumatic mitral stenosis in children: More accelerated course in sub-Saharan patients. *BMC Cardiovasc Disord*. 1 Nov 2013; 13: 95. DOI: https://doi.org/10.1186/1471-2261-13-95
- 82. **Vijayvergiya R, Sharma R, Shetty R, Subramaniyan A, Karna S, Chongtham D.** Effect of percutaneous transvenous mitral commissurotomy on left atrial appendage function: An immediate and 6-month follow-up transesophageal Doppler study. *J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr.* Nov 2011; 24(11): 1260–7. DOI: https://doi.org/10.1016/j.echo.2011. 07.015
- 83. **Yadeta D, Semeredin N, Mekonnen GE.** Prevalence and correlates of atrial fibrillation and its embolic complications in patients with rheumatic heart disease at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. *Ethiop J Health Dev.* 2019; 33(1): 12–16.

- 84. Zhang W, Mondo C, Okello E, Musoke C, Kakande B, Nyakoojo W, et al. Presenting features of newly diagnosed rheumatic heart disease patients in Mulago Hospital: A pilot study. *Cardiovasc J Afr.* Mar 2013; 24(2): 28–33. DOI: https://doi.org/10.5830/CVJA-2012-076
- 85. **Zhou Z, Hu D.** An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. *J Epidemiol.* 2008; 18(5): 209–16. DOI: https://doi.org/10.2188/jea. JE2008021
- 86. Zühlke L, Karthikeyan G, Engel ME, Rangarajan S, Mackie P, Cupido-Katya Mauff B, et al. Clinical outcomes in 3,343 children and adults with rheumatic heart disease from 14 low- and middle-income countries: Two-year follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). *Circulation.* 8 Nov 2016; 134(19): 1456–1466.
- 87. **Buyukkaya S, Buyukkaya E, Arslan S, Aksakal E, Sevimli S, Gundogdu F,** et al. Evaluation of left ventricular long-axis function in cases of rheumatic pure mitral stenosis with atrial fibrillation. *Tex Heart Inst J.* 2008; 35(1): 22–7.
- 88. Kabukçu M, Arslantas E, Ates I, Demircioglu F, Ersel F. Clinical, echocardiographic, and hemodynamic characteristics of rheumatic mitral valve stenosis and atrial fibrillation. *Angiology*. Mar–Apr 2005; 56(2): 159–63. DOI: https://doi.org/10.1177/000331970505600206
- 89. Ancona R, Comenale Pinto S, Caso P, Di Salvo G, Severino S, D'Andrea A, et al. Two-dimensional atrial systolic strain imaging predicts atrial fibrillation at 4-year follow-up in asymptomatic rheumatic mitral stenosis. *J Am Soc Echocardiogr.* Mar 2013; 26(3): 270–7. DOI: https://doi.org/10.1016/j. echo.2012.11.016
- 90. Keren G, Etzion T, Sherez J, Zelcer AA, Megidish R, Miller HI, et al. Atrial fibrillation and atrial enlargement in patients with mitral stenosis. *Am Heart J*. Nov 1987; 114(5): 1146–55. DOI: https://doi.org/10.1016/0002-8703(87)90190-6
- 91. Krishnamoorthy KM, Dash PK. Prediction of atrial fibrillation in patients with severe mitral stenosis–Role of atrial contribution to ventricular filling. *Scand Cardiovasc J.* Dec 2003; 37(6): 344–8. DOI: https://doi.org/10.1080/14017430310015893
- 92. Sabry AM, Mansour HAE, Abo El-Azm TH, Mostafa SA, Zahid BS. Echocardiographic correlates of atrial fibrillation after mitral valve replacement. *Egypt Heart J*. Dec 2017; 69(4): 281–288. DOI: https://doi.org/10.1016/j.ehj.2017.07.002
- 93. **Sharma G, Shetkar S, Bhasin A, Ramakrishnan L, Juneja R, Naik N**, et al. High sensitive C-reactive protein and interleukin 6 in atrial fibrillation with rheumatic mitral stenosis from Indian cohort. *Indian Heart J*. Jul–Aug 2017; 69(4): 505–511. DOI: https://doi.org/10.1016/j.ihj.2016.12.006
- 94. Probst P, Goldschlager N, Selzer A. Left atrial size and atrial fibrillation in mitral stenosis. Factors influencing their relationship. *Circulation*. Dec 1973; 48(6): 1282–7. DOI: https://doi.org/10.1161/01. CIR.48.6.1282
- 95. Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB, et al. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation. Feb 1976; 53(2): 273–9. DOI: https://doi.org/10.1161/01.CIR.53.2.273
- 96. **Grigioni F, Avierinos JF, Ling LH, Scott CG, Bailey KR, Tajik AJ,** et al. Atrial fibrillation complicating the course of degenerative mitral regurgitation: Determinants and long-term outcome. *J Am Coll Cardiol.* 3 Jul 2002; 40(1): 84–92. DOI: https://doi.org/10.1016/S0735-1097(02)01922-8
- 97. Selcuk MT, Selcuk H, Maden O, Temizhan A, Aksu T, Dogan M, et al. Relationship between inflammation and atrial fibrillation in patients with isolated rheumatic mitral stenosis. *J Heart Valve Dis*. Sep 2007; 16(5): 468–74.
- 98. Alessandri N, Tufano F, Petrassi M, Alessandri C, Di Cristofano C, Della Rocca C, et al. Atrial fibrillation in pure rheumatic mitral valvular disease is expression of an atrial histological change. *Eur Rev Med Pharmacol Sci.* Nov–Dec 2009; 13(6): 431–42.
- 99. Duran NE, Duran I, Sönmez K, Gençbay M, Akçay A, Turan F. Frequency and correlates of atrial fibrillation in severe mitral regurgitation. *Anadolu Kardiyol Derg.* Jun 2003; 3(2): 129–34.
- 100. Khatouri A, Elyounassi B, Kendoussi M, Moyoupa C, Fall PD, Bahji M, et al. Predictive factors of atrial fibrillation in mitral stenosis. Clinical and echocardiographic study. *Ann Cardiol Angeiol (Paris)*. Oct 1999; 48(8): 569–73.
- 101. **Unverferth DV, Fertel RH, Unverferth BJ, Leier CV.** Atrial fibrillation in mitral stenosis: Histologic, hemodynamic, and metabolic factors. *Int J Cardiol.* Feb 1984; 5(2): 143–54. DOI: https://doi.org/10.1016/0167-5273(84)90137-2

- 102. Noubiap JJ, Bigna JJ, Agbor VN, Mbanga C, Ndoadoumgue AL, Nkeck JR, et al. Meta-analysis of atrial fibrillation in patients with various cardiomyopathies. *Am J Cardiol.* 15 Jul 2019; 124(2): 262–269. DOI: https://doi.org/10.1016/j.amjcard.2019.04.028
- 103. **Stambler BS, Ngunga LM.** Atrial fibrillation in Sub-Saharan Africa: Epidemiology, unmet needs, and treatment options. *Int J Gen Med.* 31 Jul 2015; 8: 231–42. DOI: https://doi.org/10.2147/IJGM.S84537
- 104. Bonny A, Ngantcha M, Sholtz W, Chin A, Nel G, Anzouan-Kacou JB, et al. Cardiac arrhythmias in Africa: Epidemiology, management challenges, and perspectives. *J Am Coll Cardiol.* 2019; 73(1): 100–109. DOI: https://doi.org/10.1016/j.jacc.2018.09.084
- 105. Lip GY, Fauchier L, Freedman SB, Van Gelder I, Natale A, Gianni C, et al. Atrial fibrillation. Nat Rev *Dis Primers*. 2016; 2: 16016. DOI: https://doi.org/10.1038/nrdp.2016.16
- 106. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, et al. Inflammation as a risk factor for atrial fibrillation. *Circulation*. 16 Dec 2003; 108(24): 3006–10. DOI: https://doi.org/10.1161/01.CIR.0000103131.70301.4F
- 107. **Chiu-Braga YY, Hayashi SY, Schafranski M, Messias-Reason IJ.** Further evidence of inflammation in chronic rheumatic valve disease (CRVD): High levels of advanced oxidation protein products (AOPP) and high sensitive C-reactive protein (hs-CRP). *Int J Cardiol.* 10 May 2006; 109(2): 275–6. DOI: https://doi.org/10.1016/j.ijcard.2005.04.030
- 108. **Gölbasi Z, Uçar O, Keles T, Sahin A, Cagli K, Camsari A,** et al. Increased levels of high sensitive C-reactive protein in patients with chronic rheumatic valve disease: Evidence of ongoing inflammation. *Eur J Heart Fail*. Oct 2002; 4(5): 593–5. DOI: https://doi.org/10.1016/S1388-9842(02)00102-2
- 109. Yetkin E, Erbay AR, Ileri M, Turhan H, Balci M, Cehreli S, et al. Levels of circulating adhesion molecules in rheumatic mitral stenosis. *Am J Cardiol.* 15 Nov 2001; 88(10): 1209–11. DOI: https://doi.org/10.1016/S0002-9149(01)02067-7
- 110. Dakay K, Chang AD, Hemendinger M, Cutting S, McTaggart RA, Jayaraman MV, et al. Left atrial enlargement and anticoagulation status in patients with acute ischemic stroke and atrial fibrillation. *J Stroke Cerebrovasc Dis.* Jan 2018; 27(1): 192–197. DOI: https://doi.org/10.1016/j.jstrokecerebrovas-dis.2017.08.025
- 111. Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: Treatment considerations for a dual epidemic. *Circulation*. 12 May 2009; 119(18): 2516–25. DOI: https://doi.org/10.1161/CIRCULA-TIONAHA.108.821306
- 112. Van Gelder IC, Crijns HJ, Tieleman RG. Chronic atrial fibrillation. Success of serial cardioversion therapy and safety of oral anticoagulation. *Arch Intern Med.* 1996; 156(22): 2585–92. DOI: https://doi.org/10.1001/archinte.1996.00440210109011
- 113. **Grigioni F, Benfari G, Vanoverschelde JL, Tribouilloy C, Avierinos JF, Bursi F,** et al. Long-term implications of atrial fibrillation in patients with degenerative mitral regurgitation. *J Am Coll Cardiol.* 29 Jan 2019; 73(3): 264–274.
- 114. **Oldgren J, Healey JS, Ezekowitz M, Commerford P, Avezum A, Pais P,** et al. Variations in cause and management of atrial fibrillation in a prospective registry of 15,400 emergency department patients in 46 countries: The RE-LY Atrial Fibrillation Registry. *Circulation*. 15 Apr 2014; 129(15): 1568–76. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.005451

How to cite this article: Noubiap JJ, Nyaga UF, Ndoadoumgue AL, Nkeck JR, Ngouo A, Bigna JJ. Meta-Analysis of the Incidence, Prevalence, and Correlates of Atrial Fibrillation in Rheumatic Heart Disease. *Global Heart*. 2020; 15(1): 38. DOI: https://doi.org/10.5334/gh.807

Submitted: 16 April 2020 Accepted: 16 April 2020

 $|\mathbf{u}|$

Published: 18 May 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Global Heart is a peer-reviewed open access journal published by Ubiquity Press.

