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ABSTRACT

The MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution) leveraged the platform of the MESA
cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health.
MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air
communities, creating individual exposure estimates for each participant. These models combine cohort-
specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and
meteorological information. Together with extensive phenotyping in MESA—and adding participants and
health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of
outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling, but
also biostatistical advances in addressing exposure measurement error and temporal confounding. The
MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and
provided a research platform for advances in environmental epidemiology.
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Heart disease is the leading cause of death in the
United States and several studies have suggested that, like
cigarette smoking or stress, exposure to air pollutants is
an important risk factor for cardiovascular morbidity and
mortality. Studies in animals have shown relationships
between air pollution exposure and cardiovascular effects,
such as atherosclerosis. Human cross-sectional, time-se-
ries, and cohort studies have found that people living in
communities experiencing higher levels of air pollution
have more frequent cardiovascular disease events. How-
ever, few studies have been able to look at the health
effects of air pollution levels on specific individuals over
long periods of time. Previous studies of the long-term
effects of air pollution on cardiovascular health were
built—after the fact—on studies designed to assess either
other risk factors or other outcomes. The MESA Air
(Multi-Ethnic Study of Atherosclerosis and Air Pollution)
was uniquely designed to look at the prospective rela-
tionship between air pollution exposure and the devel-
opment of cardiovascular disease and includes intensive
individual participant measures of health and subclinical
disease processes [1].

MESA Air measured subclinical markers of arterio-
sclerosis and atherosclerosis—calcification of the coro-
nary arteries and thickness of artery walls—in a
population of 7,551 older adults who were free of car-
diovascular disease at enrollment and estimated the
amount of air pollution experienced by these people over
the course of >10 years. In order to create these air
pollution estimates, MESA Air investigators collected
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thousands of air samples in the places where the study
participants lived, including samples at many of their
houses. Throughout the course of the study, MESA and
MESA Air repeatedly measured coronary artery calcium
(CAC) and carotid artery wall thickness (intima-media
thickness) to determine the extent and rate of develop-
ment of atherosclerosis. MESA Air then examined the
relationship between each person’s exposure to air
pollution and their development of atherosclerosis, while
accounting for many other factors about each person
including demographics and other health factors. MESA
and MESA Air also carefully tracked cardiovascular
events—such as heart attacks—in this population, to see
whether these events were associated with higher levels of
air pollution.

Concentrations of air pollutants are continuing to
decrease in the United States [2,3], which is a victory for
public health. MESA Air is positioned to understand these
concentration differences over time and the resulting
impact on health endpoints.
STUDY POPULATION
MESA Air is an ancillary study to MESA, a long-term study
of the progression of cardiovascular disease in adults,
which included 6,814 participants from 6 U.S. commu-
nities: Baltimore, MD; Chicago, IL; Forsyth County, NC;
Los Angeles, CA; New York, NY; and St. Paul, MN.
MESA participants were aged 45 to 84 years at enrollment
between 2000 and 2002, with an approximately equal sex
343

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gheart.2016.07.004&domain=pdf


From the *Department of
Epidemiology, School of
Public Health, University of
Washington, Seattle, WA,
USA; yDepartment of Envi-
ronmental and Occupa-

tional Health Sciences,
School of Public Health,
University of Washington,
Seattle, WA, USA;
zDepartment of Medicine,
University of Washington,

Seattle, WA, USA;
xDepartment of Commu-
nity and Environmental
Health, College of Health
Sciences, Boise State Uni-
versity, Boise, ID, USA;

jjDepartment of Epidemi-
ology, Johns Hopkins Uni-
versity Bloomberg School
of Public Health, Baltimore,
MD, USA; {Institute of
Health and Environment,
Seoul National University,

Seoul, Korea; #Department
of Biostatistics, University
of Washington, Seattle,
WA, USA; **Institute for
Minority Health Research,
University of Illinois at

Chicago, Chicago, IL, USA;
yyDepartment of Preven-
tive Medicine, North-
western University
Feinberg School of Medi-
cine, Chicago, IL, USA; and
the zzDepartment of

Epidemiology, University of
Michigan, Ann Arbor, MI,
USA. Correspondence: J. D.
Kaufman (joelk@u.
washington.edu).

GLOBAL HEART
© 2016 World Heart
Federation (Geneva). Pub-

lished by Elsevier Ltd. All
rights reserved.
VOL. 11, NO. 3, 2016
ISSN 2211-8160/$36.00.
http://dx.doi.org/10.1016/
j.gheart.2016.07.004

j gREVIEW

344
ratio, and were free of recognized cardiovascular disease at
baseline. Four ethnic/racial groups were targeted for in-
clusion: non-Hispanic black, Chinese, non-Hispanic white,
and Hispanic, but recruitment of racial/ethnic groups var-
ied by study site. All participants provided informed con-
sent before participation.

In order to capitalize on exposure heterogeneity in the
vicinity of 2 existing MESA clinical centers, MESA Air also
recruited new participants in 2 new communities in Los
Angeles and 1 new community in New York. As with the
existing MESA cohort, the recruitment of these participants
was community-based. Eligible “new recruits” for MESA
Air were defined as persons living within certain
geographic boundaries who were between the ages of 49
and 88 at recruitment and were non-Hispanic black,
Chinese, non-Hispanic white, or Hispanic and, like MESA
participants, had no previous clinically apparent cardio-
vascular disease at the time of recruitment. New recruits
were selected from Santa Monica/Coastal LA County to
represent an upwind, and lower exposure, location relative
to the city center. Recruits from Riverside County were
selected to represent a downwind location relative to the
urban center and as an area with some of the highest
pollution levels in the nation. Participants were also
recruited from Rockland County, upwind of the New York
City region, to have similar regional scale pollution to those
participants in North Manhattan and the South Bronx but
without the urban contribution to pollutants. In Coastal LA
and Riverside, CA, 77 and 80 participants were enrolled,
respectively, and 100 participants were enrolled from
Rockland County, NY.

The largest portion (n ¼ 5,674) of the MESA Air
cohort was recruited from the main MESA cohort at a
clinical exam and consented to participate in air pollu-
tionespecific questionnaires and other study-specific
components. Another 1,130 MESA participants did not
have the opportunity to explicitly consent to the study-
specific components of the MESA Air ancillary study, but
they are included in those analyses where only residential
address is required to estimate outdoor air pollutant levels.
Thus, >99% of the MESA cohort is included in at least
some MESA Air analyses. A large MESA ancillary study,
MESA Family, was an additional source of consented
MESA Air participants. The MESA Family study aimed to
recruit 300 siblings of the MESA study participants from
each field center, for an investigation of genetic aspects of
subclinical cardiovascular disease. MESA Air recruited from
this population, limiting recruitment to those residing in
the MESA Air communities and who were without
cardiovascular disease at study entry, resulting in 490
participants from the MESA Family study recruited to
MESA Air.

As described, MESA Air analyses include as many as
7,551 participants from these 3 recruitment sources.
Additional details regarding participant eligibility,
recruitment, and the resulting demographic distributions
of the cohort are provided in Kaufman et al. [1].
EXPOSURE MEASUREMENTS
Intensive community-scale exposure monitoring occurred
in the MESA Air regions from July 2005 through July 2009
[4]. All outdoor monitors collected cumulative, time-
integrated data over 2-week periods, and samples were
analyzed for fine particulate matter (PM2.5), black carbon,
oxides of nitrogen (NOX), nitrogen dioxide (NO2), ozone
(O3), sulfur dioxide (SO2), and trace elements. In ancillary
studies, investigators analyzed levels of elemental and
organic carbon, endotoxins, and coarse particulate matter
(PM2.5e10) at a subset of locations and extended the
analysis of trace metals [5,6]. Outdoor monitoring cam-
paigns included fixed monitoring stations, community
saturation monitoring, and residential monitoring at
participant homes. In addition to predicting air pollutant
concentrations outdoors at participants’ homes, the MESA
Air exposure assessment also estimated the amount of
outdoor pollutants infiltrated indoors and encountered
by participants. To inform these models, MESA Air
collected 526 2-week, paired indoor-outdoor PM2.5 filter
samples from a subset of study homes [4,7]. PM2.5

elemental composition was measured by x-ray fluores-
cence, and infiltration efficiencies were estimated as the
indoor/outdoor sulfur ratio in collected fine particles. To
evaluate sources of measurement variation and assump-
tions underlying the MESA Air exposure estimates, a subset
of participants was also recruited for personal monitoring.
Personal sampling included PM2.5, black carbon, trace
elements, NO2, NOX, and SO2. A total of 90 participants
completed the 2-week personal sampling component of
MESA Air [4].

Every MESA Air participant was asked to complete a
comprehensive MESA Air questionnaire at recruitment [8].
The questionnaire was the primary data collection tool for
gathering information on home characteristics relevant to
pollutant infiltration efficiencies and about behaviors
related to individual exposures and was repeated up to 6
times during follow-up phone calls and a later clinic exam.
Repeated administration was triggered for participants who
indicated a major change in lifestyle (change in residence,
work or school status, caregiver status, or in household
members). Questions asked about home characteristics
related to building type, building age, the presence of an
attached garage, and other factors relevant to infiltration.
Participants were also asked specific questions about their
typical time-location patterns in winter and summer and
could designate whether their patterns were the same in
both seasons. For each day of the week, the MESA Air
questionnaire included questions documenting hours spent
in each of 7 locations: home indoors; home outdoors; work/
volunteer/school indoors; work/volunteer/school outdoors;
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in transit (e.g., car, bike); other indoors; and other outdoors.
Participants also designated which days of the week they
considered weekends and weekdays. The amount of time
by transit mode (e.g., walking/biking, car/taxi, bus, train/
subway), road types travelled (e.g., freeways, residential
streets), and traffic conditions experienced (e.g., light traffic/
moving at the speed limit) were also documented.

EXPOSURE ASSESSMENT/AIR POLLUTION
MODELING
MESA Air developed state-of-the-art air pollution predic-
tion models for each of the MESA Air communities. In so
doing, models provided very precise and finely resolved
exposure estimates at each participant’s residence, in a
manner especially well-suited for the study of long-term
health effects. In the process of developing modern and
efficient statistical approaches for the MESA Air commu-
nities, MESA Air researchers developed novel modeling
approaches, which could then estimate exposures at other
locations and in other time periods. Even without the
specialized information available on the MESA cohort
during the period of the cohort’s follow-up, they represent
advances in the ability to predict individual-level air
pollution concentrations throughout the United States
from 1980 to the present.

Models for MESA Air cities
Individual-level exposure to outdoor ambient-source air
pollutants was estimated for 7,551 MESA and MESA Air
study participants [9e11]. MESA Air researchers devel-
oped a unified modeling approach for predicting PM2.5,
NO2, NOX, black carbon (as measured by light absorption
coefficient) [9], O3 [11], and, most recently, 4 PM2.5

components: elemental carbon; organic carbon; sulfur; and
silicon [12]. These exposure estimates incorporated data
from several sources including extensive, project-specific
air monitoring programs within the study communities
and at participants’ homes, involving the deployment of
over 7,400 monitors collecting cumulative, time-integrated
data over 2-week periods throughout a 4-year period; all
available Air Quality System (AQS) monitoring data re-
ported by the U.S. Environmental Protection Agency [13];
and a custom-built, comprehensive database of >800
geographic and traffic-related variables providing infor-
mation such as subject residential proximity to potential
exposure sources. These data sources were integrated via a
unified spatiotemporal exposure model to estimate each
participant’s predicted residential pollutant concentration
for ambient-source PM2.5 and gaseous pollutants for every
2-week period from the year prior to recruitment (1999),
over the entire study period (year 2012, at the time of
writing).

Region-specific models included a long-term spatial
mean, temporal trends with spatially varying coefficients,
and a spatiotemporal residual. Prediction accuracy was
high for most models, with a cross-validation R2 >0.80 at
GLOBAL HEART, VOL. 11, NO. 3, 2016
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regulatory and fixed monitoring sites for most regions and
pollutants [9,11] Model prediction accuracy for 4 PM2.5

components (sulfur, silicon, elemental carbon, and organic
carbon) was reasonably high for all except silicon [12].
These complex models capture both spatial and temporal
variability in these pollutants. Figure 1 shows annual
average predictions of PM2.5 for Los Angeles for the years
2000, 2004, 2008, and 2012, demonstrating changes in
fine particulate concentrations over time. Figure 2 shows
the fine-scale spatial variability these models are able to
capture for a single year. An important outcome of the
MESA Air modeling effort is the development of flexible
spatiotemporal modeling methods for environmental ex-
posures with spatial and spatiotemporal covariates and
irregular monitoring data, which are available for R users as
the SpatioTemporal package (R Foundation, Vienna,
Austria) [14,15].

National models
MESA Air researchers developed regionalized national
universal Kriging models for annual average PM2.5 and
NO2 across the United States [16,17]. The NO2 model also
incorporated satellite tropospheric data. These models
demonstrated very high levels of cross-validated accuracy
of prediction with overall R2 of 0.85 or more and well-
calibrated prediction intervals. MESA Air investigators
have also developed national spatial exposure models that
used partial least squares and universal Kriging to estimate
annual average concentrations of 4 PM2.5 components:
elemental carbon, organic carbon, silicon, and sulfur [18].
Our models performed well, with cross-validated R2 values
ranging from 0.62 to 0.95 [18]. Subsequent national
models were generated for SO2, sulfate, nitrate, nickel,
vanadium, copper, arsenic, and chromium [5]. This new
generation of highly accurate modeling approaches,
enabled by the MESA Air project, can be used to predict
ambient air pollution concentrations for other study pop-
ulations, with a few of the collaborations to date described
here.

Historical models
In addition to the unified spatiotemporal model that was
used to generate predictions covering the main period of
MESA and MESA Air follow-up (1999-2012), a new
exposure model has been recently developed and validated
that is capable of estimating PM2.5 exposures from 1980
through 2012 [19,20] This spatiotemporal historical pre-
diction model was developed using historical geographic
predictors and annual average PM2.5 data from 1999
through 2012 taken from the U.S. Environmental Protec-
tion Agency’s FRM (Federal Reference Method) network
with supplemental data from the IMPROVE (Interagency
Monitoring of Protected Visual Environments) sites located
predominantly in rural areas. The model uses a temporal
basis function with a spatially varying coefficient to
represent smooth spatiotemporal variability. The spatially
345
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varying coefficients are modeled in universal Kriging
frameworks using geographic predictors. The temporal
trend in annual averages of PM2.5 before 1999 was esti-
mated using extrapolation based on PM2.5 data for 1999 to
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FIGURE 2. Year 2000 annual average predicted
2012 in FRM and IMPROVE. The model was validated
using external sources of PM2.5 data collected before 1999
from IMPROVE for 1990 to 1998 (not used for model
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sampler monitoring, the Children’s Health Study, and the
Inhalable Particulate Network. The historical PM2.5 pre-
diction model performed well (R2 ¼ 0.85 to 0.91) in the
validation using IMPROVE data for 1990 to 1998 when a
relatively large number of sites were available. This his-
torical prediction modeling approach allows us to assess
health effects associated with long-term exposures to PM2.5

over extended time periods, capitalizing on the extensive
residential history data available in MESA and MESA Air.
Although these models cannot perform with the same
effectiveness as the MESA Air models from 1999 to 2013,
these new historical models will permit meaningful
assessment of long-term concentrations to an unprece-
dented extent for epidemiological analyses. As with our
other exposure models, these approaches can be used to
predict historical ambient air pollution concentrations for
other study populations throughout the contiguous United
States, and they have begun to be used in collaborative
efforts in several cohorts.

Infiltration and time-location patterns
In addition to estimating outdoor concentrations, the
MESA Air group successfully employed individual-level,
questionnaire-derived data on residential characteristics in
order to calculate infiltration efficiencies for all of the res-
idences in which each participant lived during the MESA
Air study [7]. These infiltration models predicted 60% of
the variance in 2-week residential infiltration efficiency
estimates. This allowed the estimation of concentrations of
ambient-source pollution in indoor environments. MESA
Air researchers also investigated the time-location patterns
of the MESA cohort and found that the time spent in
home, work, vehicle, and other locations varied by sex,
age, race/ethnicity, income, education, and employment
status [8,21]. These resources can be applied to other
similar populations.

Exposure relationships
The MESA Air research platform has allowed investigators
to explore how exposures to other environmental stressors
interact or correlate with exposures to air pollution. Ex-
amples include investigations into the relationships be-
tween air pollution exposures and biomarkers (e.g., metals
in urine) and related exposures (e.g., noise). MESA Air
investigators found a positive association of PM2.5 levels
with urinary tungsten and also some evidence of an asso-
ciation with urinary uranium but did not see any rela-
tionship to urinary cadmium or antimony [22]. MESA Air
researchers also found a moderate correlation between air
pollution and noise [23].

HEALTH EFFECTS ANALYSES
Using state-of-the-art exposure assessment methods, MESA
Air has examined the relationship between exposure to
ambient air pollution and cardiovascular, pulmonary, and
other health effects with a focus on the development of
GLOBAL HEART, VOL. 11, NO. 3, 2016
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cardiovascular disease (Figure 3) [24e47]. The prospective
nature of MESA Air allowed investigations into a large
number of health and physiological measures, and in so
doing developed a more comprehensive view of the impact
of pollution exposure on the interconnected pathways that
result in cardiovascular disease events.

Cardiovascular health effects
A major aim of MESA Air was to investigate the relation-
ship between air pollution exposures and progression of
subclinical cardiovascular disease, and MESA Air re-
searchers recently reported the findings with 10 years of
repeated CAC measurements. CAC by computed tomog-
raphy was measured 1 to 4 times (mean: 2.5) over 10 years
in 6,795 MESA Air participants. Estimated residence-
specific concentrations of PM2.5 and NOX were averaged
between participants’ examinations. Relationships between
CAC progression and these concentrations were assessed,
adjusting for baseline age, sex, race/ethnicity, socioeco-
nomic characteristics, cardiovascular risk factors, site, and
computed tomography scanner technology. In this popu-
lation, mean crude CAC increase was 24 Agatston units/
year. Participant-specific pollutant concentrations averaged
over the years 2000 to 2010 ranged from 9.2 to 22.6 mg
PM2.5/m

3 and 7.2 to 139.2 parts per billion NOX. For each
additional 5 mg PM2.5/m

3, CAC progression was acceler-
ated by 4.1 Agatston units/year (95% confidence interval
[CI]: 1.4 to 6.8) and for each 40 parts per billion NOX,
CAC progression was accelerated by 4.8 Agatston units/
year (95% CI: 0.9 to 8.7) (Figure4). These findings indicate
that increased concentrations of fine particulate matter and
traffic-related air pollution within metropolitan areas, in
ranges commonly encountered worldwide, are associated
with progression in coronary artery calcification, consistent
with acceleration of atherosclerosis [41].

Although not explicitly related to air pollution, MESA
Air researchers also examined the relationship between
CAC progression and other cardiovascular disease risk
factors, using an innovative application of mixed-effects
models to adjust for modeled baseline and time-varying
risk factors, and making use of the 10-year follow-up
CAC information provided by MESA Air support [48].
Positive associations were observed between CAC pro-
gression and anticipated predictors of atherosclerosis pro-
gression such as age, male sex, hypertension, and diabetes.

Other key cardiovascular health findings. MESA Air
researchers and collaborating investigators have examined
relationships between air pollution exposures and
numerous cardiovascular disease endpoints. Positive asso-
ciations were found among long-term air pollution and
markers of inflammation and coagulation including
C-reactive protein, interleukin-6, and D-dimer and be-
tween short-term exposures and E-selectin, a marker of
endothelial activation [27,28]. Long-term PM2.5 exposure
was significantly associated with decreased endothelial
function according to brachial ultrasound results [30].
347
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MESA Air researchers investigated the association between
air pollution and the microvasculature via retinal photog-
raphy and found that both long-term and short-term
increased residential concentrations of air pollution were
each associated with narrower retinal arteriolar diameters
[42]. Acute exposures to particulate air pollution were
associated with lower heart rate variability, and this rela-
tionship was stronger in individuals with metabolic syn-
drome [29]. There was only a weak relationship between
coarse PM exposure and heart rate variability [33]. Short-
term and long-term exposure to air pollutants were
found to be positively associated with increases in systolic
blood and pulse pressure [31,32].

An elevated but nonsignificant relationship was
found between PM2.5 and aortic calcification [36].
Higher levels of NO2 exposure were associated with
greater right ventricle mass and larger right ventricle
end-diastolic volume [43]. Long-term particle mass
exposure did not appear to be associated with greater
arterial stiffness in the MESA Air cohort [44]. Living in
close proximity to major roadways is associated with
higher left ventricular mass, suggesting chronic vascular
end-organ damage from a traffic-related environmental
exposure [45,46]. Using measurements of QT interval
and QRS duration from 12-lead electrocardiograms,
MESA Air researchers demonstrated an association be-
tween long-term exposure to air pollution and
ventricular repolarization and conduction abnormalities
in adults without clinical cardiovascular disease, inde-
pendent of subclinical coronary arterial calcification [47].
A cross-sectional analysis of circulating adhesion mole-
cules demonstrated evidence of an association between
air pollution and several markers of adhesion, including
chemokine ligand 21 [49].

Other air pollution health effects in MESA
In addition to cardiovascular effects, MESA Air in-
vestigators have also investigated the relationship between
air pollution and pulmonary health effects, diabetes, and
other health effects in the MESA Air cohort. Cross-sectional
analyses did not demonstrate a relationship between air
pollution exposure and percentage of emphysema [50], but
MESA Air researchers found that long-term PM2.5 exposure
may contribute to subclinical pulmonary vascular differ-
ences [51]. A recent study found a cross-sectional associ-
ation between several urinary catecholamines and long-
term residential concentrations of PM2.5 and NOX, and
these novel findings support the hypothesis that air
pollutant exposures are related to sympathetic nervous
system activation [52]. MESA Air researchers found that
exposure to air pollution (PM2.5 and NO2) was associated
with prevalent type 2 diabetes at baseline but not with
incident diabetes after 9 years of follow-up [34]. Exposure
to higher levels of PM2.5 over a 3-month period was
GLOBAL HEART, VOL. 11, NO. 3, 2016
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associated with reduced high-density lipoprotein choles-
terol particle concentration [53]. In analyses of long-term
air pollution exposure and “global” deoxyribonucleic acid
methylation, there was little association between PM2.5 and
long interspersed nucleotide elements methylation or Alu
methylation [54]. In our analyses thus far, no relationship
has been established between air pollution exposure
and erectile dysfunction [55] or nonalcoholic fatty liver
disease [56].

Air pollution health effects using MESA Air
exposure models in other populations
Using exposure models that leveraged the MESA Air work,
researchers have conducted investigations in a number of
GLOBAL HEART, VOL. 11, NO. 3, 2016
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other cohorts including the Sister Study, the PAGE
(Parkinson’s, Genes and Environment) study, the Women’s
Health Initiative, and the CHAP (Chicago Healthy Aging
Project). In a study of adult asthma in women, researchers
found that PM2.5 exposure increases the risk of developing
asthma and that PM2.5 and NO2 increase the risk of
developing wheezing, the cardinal symptom of asthma
[57]. A study of aging found a relationship between long-
term NOX exposure and declines in age-related physical
disability [58]. In the Women’s Health Initiative, an in-
crease in PM2.5 exposure was associated with an increased
risk of a cardiovascular disease event [59]. Although there
was not strong evidence for an association between expo-
sures to ambient PM10, PM2.5, or NO2 concentrations and
349
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risk of Parkinson disease in older adults, subgroup analyses
suggested that female nonsmokers exposed to higher
concentrations of PM10 or PM2.5 may have a higher risk for
Parkinson disease [60].

Air pollution and socioeconomic status
MESA Air researchers examined associations between air
pollutant concentrations (outdoor PM2.5 and NOX) and
socioeconomic status (SES) of both individuals and their
neighborhoods [59,61]. One of the important features of
this work was the determination that neighborhood SES
was more strongly associated with air pollution concen-
trations than was SES at the individual level. Because
neighborhood SES has been associated with cardiovascular
health outcomes, this finding has influenced subsequent air
pollution health effects analyses to include a neighborhood
SES index as a covariate in statistical models, thus reducing
potential confounding. Furthermore, research also sug-
gested that low SES communities are exposed to higher
concentrations of air pollution, but interestingly there is
some heterogeneity by site. In New York City specifically,
high SES individuals were exposed to higher concentra-
tions of air pollution, a result only rarely reported in the
U.S. environmental justice literature.

The MESA Air group also investigated the associa-
tion between air pollution and racial residential segre-
gation [62]. Some theoretical work has suggested that
residential segregation is a factor that produces and
maintains differential levels of air pollution across the
population, but little empirical work was available to
support this notion. Ours was among the first analyses
to examine this association empirically and found that
neighborhoods where Hispanics were overrepresented
were indeed experiencing higher outdoor concentrations
of both PM2.5 and NOX.

Additionally, MESA Air has examined the role of
sociodemographic and psychosocial characteristics in
modifying associations between air pollution exposure and
cardiovascular outcomes. MESA Air research has examined
the modifying effect of race/ethnicity, racial residential
segregation, low SES, and psychosocial stress on the as-
sociation among 3 air pollutants (PM2.5, NO2, and NOX)
and 2 markers of cardiovascular health—left ventricular
mass index and left ventricular ejection fraction [63].
Compared with white participants, black participants
showed a stronger adjusted association between air pollu-
tion and left ventricular mass index. There was no evidence
for a modifying role of any of the other social factors or of
left ventricular ejection fraction. The modifying role of
social and psychosocial factors on associations between
exposure to PM2.5 and blood pressure measures was also
examined [35]. There was no evidence of synergistic effects
of higher PM2.5 and adverse social/psychosocial factors on
blood pressure. In contrast, there was some evidence of
stronger associations of PM2.5 with blood pressure in
higher socioeconomic status groups.
BIOSTATISTICAL METHOD ADVANCEMENTS
MESA Air investigators have made significant and impor-
tant contributions to the field of measurement error in
2-stage air pollution epidemiology studies [18,64e70].
This work specifically contributes to our broader under-
standing of the sources and impacts of measurement error
on estimation of health effects in air pollution cohort
studies, and, more importantly, of how to design exposure
models to minimize the impact of this error and correct for
it using post hoc bootstrap and asymptotic calculations.

Additional work examining appropriate methods to
adjust for unmeasured temporal confounding in estimating
acute air pollution health effects in cohort studies has also
been developed and published by MESA Air investigators
[71]. This work provides conditions under which tradi-
tional time series methods for semiparametric regression
may validly be used in cohort studies and also develops a
more efficient pre-adjustment method that uses all avail-
able exposure data, including monitoring data available on
days when health outcomes are not measured. Taken
together, the methodological work produced by MESA Air
investigators represents a major contribution to the field of
air pollution epidemiology at the national, community, and
individual levels.

MESA Air biostatistics researchers have also published
on methods for selecting and combining data from multi-
ple sources [72], exposure estimation [37,73], choice of
exposure prediction models [6,38,74,75], and reduced-
rank spatiotemporal modeling.
SUMMARY
MESA Air was designed to provide the most advanced
approach possible to define the relation between air
pollution exposure and cardiovascular disease [1]. With
the first fully prospective cohort study of this relationship,
MESA Air effectively merges state-of-the-art cardiovascular
epidemiology with cutting edge exposure assessment,
including comprehensive, study-specific air pollution
monitoring and novel spatiotemporal exposure modeling.
MESA Air’s research contributions include the develop-
ment of city-specific and national exposure models of air
pollutants, extensive exposure monitoring, innovative
health outcomes assessments (e.g., CAC progression), an-
alyses of relationships between air pollution and a wide
variety of outcomes with a focus on cardiovascular health,
and biostatistical method development.
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