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ABSTRACT

Background: The renin-angiotensin system (RAS) plays an important role in regulating blood pressure and
controlling sodium levels in the blood. Hyperactivity of this system has been linked to numerous
conditions including hypertension, kidney disease, and congestive heart failure. Three classes of drugs have
been developed to inhibit RAS. In this study, we provide a structure-based analysis of the effect of single
nucleotide variants (SNVs) on the interaction between renin and angiotensinogen with the aim of revealing
important residues and potentially damaging variants for further inhibitor design purposes.

Objectives: To identify SNVs that have functional and potentially damaging effects on the renin-angiotensinogen
complex and to use computational approaches to investigate how SNVs might have damaging effects.

Methods: A comprehensive set of all known SNVs in the renin and angiotensinogen proteins was extracted
from the HUMA database. This dataset was filtered by removing synonymous and missense variants and using
the VAPOR pipeline to predict which variants were likely to be deleterious. Variants in the filtered dataset were
modeled into the renin-angiotensinogen complex using MODELLER and subjected to molecular dynamics
simulations using GROMACS. The residue interaction networks of the resultant trajectories were analyzed
using graph theory.

Conclusions: This research identified important SNVs in the interface of RAS and showed how they might
affect the function of the proteins. For instance, the mutant complex containing the variant P40L in
angiotensinogen caused instability in the complex, indicating that this mutation plays an important role in
disrupting the interaction between renin and angiotensinogen. The mutant complex containing the SNV
A188V in renin was shown to have significantly increased fluctuation in the residue interaction networks.
D104N in renin, associated with renal tubular dysgenesis, caused increased rigidity in the protein complex
comparison to the wild type, which probably in turn negatively affects the function of RAS.
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The renin-angiotensin system (RAS) is responsible for
the regulation of blood pressure and sodium homeostasis
[1]. This is achieved by producing angiotensin II, a potent,
8-residue vasoconstrictor, which causes the arterioles to
constrict, resulting in increased blood pressure. Angio-
tensin II also stimulates the release of aldosterone, which
increases the rate at which sodium ions are reabsorbed into
the blood [2].

When RAS is activated, the juxtaglomerular cells in
the kidneys secrete renin into the blood. Once in the
blood, renin cleaves angiotensin I, a 10-residue pep-
tide, from a plasma protein known as angiotensinogen,
which originates in the liver. Angiotensin I is then
converted to angiotensin II by angiotensin-converting
enzyme, which cleaves a further 2 residues from the
former [2].

Hyperactivity of RAS has been linked to high blood
pressure (hypertension), congestive heart failure, and
kidney disease. As such, various classes of drugs have
been developed to inhibit this system including
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angiotensin-converting enzymeinhibitors [3], angiotensin
receptor blockers [4], and renin inhibitors [5].

In this study, we have used structural bioinformatics
and network analysis techniques to investigate the effect of
nonsynonymous single nucleotide variants (SNVs) on
renin-angiotensinogen interaction to identify important
residues and potentially damaging SNVs.

MATERIAL AND METHODS

Data retrieval
Sequences and suitable Protein Data Bank (PDB) [6] struc-
tures for renin and angiotensinogen were identified via a
search of the Human Mutation Analysis (HUMA) [7] data-
base. The amino acid sequences were then downloaded
fromUniprot. Structures were evaluated for suitability based
on their coverage of the target sequences and their PDB
validation metrics, before being downloaded from the PDB.
All available SNVs for each protein were then downloaded
from the HUMA database.
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FIGURE 1. PROSA results for the renin-angiotensinogen complex.
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Homology modeling: wild type
To account for missing residues in existing experimental
structures, the renin-angiotensinogen complex was
modeled using MODELLER [8]. The complex has been
solved in 2X0B, which was used as the main template.
Renin was covered by chain A of 2X0B. Three additional
templates, 2WXY, 2WXW, and 2WXZ were used to cover
gaps in chain B (i.e., angiotensinogen). Alignment of the
templates to the target sequences was performed using
PROMALS3D [9].

After aligning, the first 73 residues of the renin target
sequence and the first 32 residues and last 3 residues of the
angiotensinogen target sequence were not covered by the
templates. These residues were trimmed from the align-
ment as a result. One hundred models were then generated
using very slow refinement.
TABLE 1. SNV data set for angiotensinogen

dbSNP ID Residue Change Location

rs539231427 H39R Interface

rs746613821 P40L Interface

rs41271499 L43F Interface

rs760531325 E48K Interface

rs751752211 S49G Interface

rs377047370 S49N Interface

rs201406560 A104T Interface

rs767370325 M105V Interface

rs756744141 D168Y Interface

SNV, single nucleotide variation.
Model evaluation
One hundred models of the renin-angiotensinogen com-
plex were generated. The top 3 models were then selected
based on their DOPE z-score [10], and further evaluated
using PROCHECK [11], VERIFY3D [12], and PROSA [13]
to validate that they were indeed accurate models. The best
model was then chosen based on the combination of these
results.
SNV filtering
The SNV data set, obtained from the HUMA database,
contains all SNVs from dbSNP [14] that could be mapped
to the renin and angiotensinogen protein sequences based
on their chromosome coordinates. As such, the resulting
data set contained synonymous and nonsense SNVs.
Reason for Inclusion

� Highly damaging prediction by VAPOR

� Interacts with position in renin where SNV occurs

� Highly damaging prediction by VAPOR

� Interacts with position in renin where SNV occurs

� Highly damaging prediction by VAPOR

� Interacts with position in renin where SNV occurs

� Interacts with position in renin where SNV occurs

� Interacts with position in renin where SNV occurs

� Highly damaging prediction by VAPOR

� Interacts with position in renin where SNV occurs

� Interacts with position in renin where SNV occurs

� Interacts with position in renin where SNV occurs

� Highly damaging prediction by VAPOR

� Interacts with position in renin where SNV occurs
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TABLE 2. SNV data set for renin

dbSNP ID Residue Change Location Reason for Inclusion

rs868694193 D104N Interface � Highly damaging prediction by VAPOR

� Interacts with position in angiotensinogen where SNV occurs

rs191049685 R148C Interface � Interacts with position in angiotensinogen where SNV occurs

rs371704012 R148H Interface � Interacts with position in angiotensinogen where SNV occurs

rs770190833 A188V Interface � Highly damaging prediction by VAPOR

rs752426689 L318R Interface � Interacts with position in angiotensinogen where SNV occurs

rs201922371 F319V Interface � Interacts with position in angiotensinogen where SNV occurs

SNV, single nucleotide variation.

TABLE 3. Mutant models of the renin-angiotensinogen complex

Model DOPE Z-Score

Renin (Chain A)

Mutants

Angiotensinogen

(Chain B) Mutants

ren_D104N �1.20 rs868694193

ren_R148C �1.19 rs191049685

ren_R148H �1.20 rs371704012

ren_A188V �1.19 rs770190833

ren_L318R �1.18 rs752426689

ren_F319V �1.17 rs201922371

gSCIENCEj
Synonymous SNVs result in no change in the amino acid
sequence. They are, therefore, unlikely to have any struc-
tural effects on the protein, and were removed from the
data set. Nonsense SNVs, on the other hand, result in early
stop codons. These SNVs are highly likely to be damaging
as they usually result in nonfunctioning proteins. As such,
there was little reason to further analyze these SNVs in this
paper and they were also removed from the data set.

The Variant Analysis Portal (VAPOR) [15], a workflow
that combines the results of PolyPhen-2 [16], Provean [17],
PhD-SNP [18], PANTHER-PSEP [19], and FATHMM [20]
to predict the functional effect of SNVs, was then used to
predict which of the remaining SNVs were likely to cause
conformational changes that would alter the functionality
of the protein. If more than 1 program predicted that the
SNV was neutral, we removed it from the data set. One
exception to this is if there was a known disease-association
in the HUMA database.

Lastly, we used the Protein Interactions Calculator [21]
to determine which residues in the complex were inter-
acting. The final data set contained all SNVs that were at
the interface between the 2 proteins and were either pre-
dicted to be damaging or were interacting with a position
at which a SNV occurred in the other protein.
ang_H39R �1.18 rs539231427

ang_P40L �1.18 rs746613821

ang_L43F �1.18 rs41271499

ang_E48K �1.18 rs760531325

ang_S49G �1.21 rs751752211

ang_S49N �1.21 rs377047370

ang_A104T �1.20 rs201406560

ang_M105V �1.18 rs767370325

ang_D168Y �1.19 rs756744141

ren_D104N_ang_L43F �1.20 rs868694193 rs41271499

ren_R148C_ang_E48K �1.17 rs191049685 rs760531325

ren_R148C_ang_S49G �1.19 rs191049685 rs751752211

ren_R148C_ang_S49N �1.20 rs191049685 rs377047370

ren_R148H_ang_E48K �1.18 rs371704012 rs760531325

ren_R148H_ang_S49G �1.20 rs371704012 rs751752211

ren_R148H_ang_S49N �1.20 rs371704012 rs377047370

ren_L318R_ang_A104T �1.20 rs752426689 rs201406560

ren_F319V_ang_A104T �1.19 rs201922371 rs201406560

ren_F319V_ang_M105V �1.20 rs201922371 rs767370325
Homology modeling: mutants
The SNVs identified in the previous step were introduced
into the structures via homology modeling. Models were
generated for each SNV individually. Additional models
were then generated where SNVs occurred at the inter-
acting positions in both renin and angiotensinogen. In
these cases, the mutants were introduced to both protein
sequences in the complex before being modeled. This
resulted in a combination of models that accounted for
each SNV occurring on its own as well as SNVs that might
co-occur with SNVs in interacting positions—potentially
compensating SNVs.

The same modeling methodology was used as for the
wild type. 2X0B, 2WXY, 2WXW, and 2WXZ, were once
again used as templates. Alignment was performed using
PROMALS3D and 100 models were generated for each
modeling run. The best model for each mutant and mutant
combination was then picked based on DOPE z-scores. As
GLOBAL HEART, VOL. 12, NO. 2, 2017
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these models were very similar to the wild type, it was not
deemed necessary to repeat the other evaluation methods
to confirm the quality.

Molecular dynamics
Homology models produced in the previous steps were
free from any nonstandard residues or missing atoms and
were thus ready for molecular dynamics (MD) simulations.
The simulations were performed for each of the complexes
using GROMACS 5.1 [22] on 480 CPU cores at the Centre
for High Performance Computing (Cape Town, South Af-
rica). The all-atom AMBER03 force field was employed for
topology generation and energy calculations. Simple point
123
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FIGURE 2. Root mean square deviation (RMSD) of the complex containing the
single nucleotide variant, P40L, in angiotensinogen. This is the only mutation
tested that destabilizes the complex.
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charge water was added for solvation, after which the
system was neutralized using 0.15 M NaCl in a triclinic
periodic box with a clearance space of 1.5 Å from the
protein. The system was then relaxed by energy minimi-
zation using the method of steepest descent with a force
tolerance of 1000 kJ/mol/nm capped at an upper limit of
50,000 steps. Short-range cutoffs (van der Waals and
Coulombic interactions) were set at 1 nm each, while long-
distance electrostatics were handled by the particle-mesh
Ewald algorithm [23]. Temperature was equilibrated at
310 K over a period of 100 ps, using the modified
Berendsen thermostat [24]. Pressure equilibration ensued,
using the Parrinello-Rahman barostat [25] to maintain the
pressure at 1 bar. Production dynamics were finally run
over 100-ns periods with 2 fs time steps, writing co-
ordinates every 5,000 steps. The LINCS algorithm [26] was
applied to correct for rotational bond lengthening during
the MD runs.
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FIGURE 3. Root mean square fluctuation (RMSF) of ren_D1
380 of renin (chain A) in disease-associated model, ren_D10
Analysis of MD trajectories
Preliminary root mean square deviation (RMSD) analysis
revealed jumps that occurred in several complexes despite our
first attempts to correct for periodic boundary conditions using
molecular center of mass. Trajectories were thus sequentially
corrected for periodic boundary conditions by first making the
proteins whole, followed by the removal of jumps across
boundaries and finally centering the protein inside the simula-
tionbox.RMSDwas computed fromCa atoms after least square
fitting along the respective protein backbones. Additionally,
root mean square fluctuation (RMSF) calculations were evalu-
ated to monitor residue motion (averaged over residue atoms)
across the entire production run.

Dynamic network analysis (evaluation at SNV
locations)
In order to calculate the residue interaction network (RIN)
over each production MD frame, multi-PDB files were first
generated using GROMACS tool for trajectory conversion.
An in-house Python script was then designed to predict
residue interaction by evaluating pairwise residue distances
between all Cb (or Ca in the case of glycine) atoms for each
complex, looped across all frames. A cutoff distance of 6.7 Å
[27] was used to define any residue-residue contact
(contact ¼ 1, no contact ¼ 0) around designated SNV
positions. A total of 10,001 frames (in PDB format) were
traversed to generate edge lists that were used by an in-house
R script—using the igraph library [28]—to produce a
weighted adjacency matrix, which was converted to fre-
quencies by dividing by the number of frames, similar to the
approach used by Doshi et al. [29]. Edge weights were dis-
played as log2 rescaled values, while the contact frequencies
were used as edge labels. The weighted RINs of the wild type
proteins were compared to their mutant counterparts at
analogous positions to assess gain or loss of contact.

Dynamic network analysis (DL)
The shortest path (Lij) between 2 nodes, i and j, in a
network is equal to the minimum number of edges that
must be traversed to reach j from i. The Li to a node, i, is
the average of all the shortest paths to i from all other
250 270 290 310 330 350 370 390 410 430 450
e posi on

_D104N (chain A) vs WT

04V. Increased rigidity is noticeable from residue 260 to
4V. WT, wild type.
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nodes in the network. Given an RIN, where each node is a
residue in a protein structure, Dijkstra’s shortest path al-
gorithm [30] can be used to produce an N � N matrix of
all versus all shortest path lengths, where N is the number
of residues in the protein. Getting the mean of each col-
umn in this matrix results in an N � 1 matrix, where each
value corresponds to the average shortest path length to
the respective residue.

For every MD run, an implementation of Dijkstra’s
shortest path algorithm in the NetworkX Python library
[31], in conjunction with the NumPy python library [32],
was used in a custom Python script to calculate the average
path matrices for RINs at 10-ns intervals (including the
RIN at time ¼ 0). As such, for each 100-ns MD run, 11
average shortest path matrices were calculated.

The mean and standard deviation of these matrices
were then calculated. The mean of the matrices represents
the average L of each of the residues over the 100-ns run,
while the standard deviation represents how much L of
each residue fluctuates over the 100 ns. The values were
plotted to an average L versus residue number graph using
Matplotlib [33].

In addition to calculating L, DL/L was calculated for all
residues after each 10ns interval by getting the difference
between the L at time ¼ 0 and L at the respective time
point and normalizing by dividing by the original L. The
mean and standard deviation of DL/L over the 100 ns were
calculated in the same way as described previously and
plotted using Matplotlib.
Dynamic network analysis (DBC)
Given a node, i, betweenness centrality (BCi) is a mea-
surement of how often shortest paths in a network run
GLOBAL HEART, VOL. 12, NO. 2, 2017
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through i. As such, it is a measure of how central a node is
for efficient navigation of the network. BC can be calcu-
lated using Brandes algorithm [34].

For each MD run, an implementation of Brandes
algorithm in the NetworkX library was used to compute
ang_P40L (Chain B, posi on 40)
6.7A contact network
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BC for all RINs at 1-ns intervals (including the RIN at
time ¼ 0). This resulted in 101 N x 1 matrices. As with
DL/L, DBC was calculated by finding the difference
between the BC at each time point and BC at time ¼ 0 (BC
values were already normalized using the NetworkX library
WT
6.7A contact network
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FIGURE 9. Interface of renin-angiotensinogen wild type. Residues HIS367 and
THR84 in renin interact with PRO40 in angiotensinogen. In ang_P40L, Proline is
replaced with Leucine and the interaction is severely reduced. In addition, DL/L
for the region corresponding to residue 245 to 407 (green). As such, it appears
that the loss of these 2 interactions affects the accessibility of this region.
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function). The mean DBC and standard deviation of DBC
for each residue were then calculated as described for DL/L.
RESULTS

Homology modeling: wild type
Homology models of the renin-angiotensinogen complex
were generated using MODELLER. All models produced
were evaluated using DOPE Z-Scores, PROCHECK,
PROSA, and VERIFY3D. The top model of the complex
had a DOPE z-score of �1.20, while PROCHECK
calculated that 90.2% of residues were in most favored
regions, and VERIFY3D calculated that 80.8% of residues
had a 3-dimensional e 1-dimensional score �0.2.
PROSA results were also positive and are depicted
in Figure 1.
SNV filtering
All 317 SNVs for renin and 212 SNVs for angiotensinogen
were downloaded from HUMA. Synonymous and
nonsense SNVs were removed from the data set. The
remaining 130 renin SNVs and 198 angiotensinogen SNVs
were submitted to VAPOR for functional predictions. For
angiotensinogen, VAPOR produced results from PolyPhen-
2, Provean, PhD-SNP, FATHMM, and PANTHER-PSEP
(Appendix 1). If more than 1 of these tools predicted
that an SNV would not have a deleterious effect, the SNV
was removed from the data set. The only exception to this
was if the SNV was associated with a disease in the HUMA
database. In this case, it was retained. The same process
was followed with renin (Appendix 2). In renin’s case,
PANTHER-PSEP was unable to produce results. The
resulting data set held 85 damaging angiotensinogen SNVs
and 39 damaging renin SNVs.

We further filtered this data set by only focusing
on residues at the interface between renin and angio-
tensinogen. All damaging SNVs in the interface were
retained in the data set. In addition, if a renin SNV was
found to be interacting with an SNV in angiotensinogen,
both were retained, regardless of the VAPOR predictions.
The final data set contained 9 angiotensinogen SNVs
(Table 1) and 6 renin SNVs (Table 2).
Homology modeling: mutants
In total, 25 mutant models of the renin-angiotensinogen
complex were produced (Table 3). Models were named
based on the SNV that they contained and the chain that
the SNV occurred in. For example, in model ang_P40L, an
SNV occurs at position 40 in angiotensinogen (chain B)
and results in a substitution of proline for leucine. Simi-
larly, in ren_A188V, an SNV occurs at position 188 in
renin (chain A) and results in a substitution of alanine for
valine.

In addition to introducing SNVs into a structure
individually, mutant models were produced with combi-
nations of SNVs. If an SNV occurred at a position in renin
that interacts with a position in angiotensinogen where
another SNV occurred, a model was produced containing
both of these potentially compensating SNVs. For example,
model ren_D104N_ang_L43F contains an SNV at position
104 in renin and position 43 in angiotensinogen and, in
the wild type, these positions were calculated to be
interacting.
Molecular dynamics
The wild type complex and the 25 mutant complexes were
subjected to 100-ns MD simulations. Of the 26 simula-
tions, 25 completed successfully. Only ren_L318R failed
due to a bad contact with water. Due to already having a
large amount of data and the fact that L318R in renin was
not predicted to be damaging by VAPOR, we decided not
to resolve this.

Of the 25 successful simulations (Appendix 3), only
ang_P40L had still not stabilized after the full 100-ns
(Fig. 2). The SNV, P40L, occurs in the loop region of
angiotensinogen, which is cleaved by renin to become
angiotensin 1. As such, the instability may indicate that this
SNV plays an important role in the binding of renin to
angiotensinogen.

RMSF was calculated for all successful MD runs
(Appendix 4). The overall trend across mutant complexes
revealed an increase in rigidity compared to the wild type,
especially in the region from residue 260 to 380 in renin.
This increased rigidity was noticeable in the complex
containing the renin SNV, D104N (Fig. 3), which, ac-
cording to HUMA, is associated with renal tubular
dysgenesis.
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The difference in rigidity is less pronounced in other
complexes, however, such as ang_P40L (Fig. 4). Although
ang_P40L was not able to stabilize over 100 ns, it seems
that most of the fluctuation occurs in the angiotensinogen
side of the complex. In angiotensinogen, ang_P40L has
increased RMSF between residues 300 to 380. Only
GLOBAL HEART, VOL. 12, NO. 2, 2017
June 2017: 121-132
ren_A188V and ren_R148C_ang_E48K show signs of
similar fluctuation in this region.

Almost all mutations resulted in increased rigidity from
residue 75 to 100 in angiotensinogen. Additionally,
increased rigidity was noticeable between residue 175 and
200 in angiotensinogen. The latter region is located on the
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inside of the former, while also being near to the interface
of the 2 proteins. It is possible that mutations occurring in
the interface help to hold this region steady, which in turn
holds the region containing residues 75 to 100 steady.

A spike in the RMSF was seen between residue 435
and 450 in a number of the mutant models. This is a loop
region far from the interface and, as such, high flexibility is
not surprising here, nor is it likely to be damaging.
Network analysis
Changes in the RINs of the models were measured by
calculating the average and standard deviation of DBC
(Appendix 5) and DL/L (Appendix 6) for each MD simu-
lation. The standard deviation provided a measurement of
how much BC and L fluctuated over the course of the run,
while the average values provided an idea of what regions
experienced a more permanent increase or decrease in BC
and L. Additionally, residue contact maps were calculated
for the positions where the SNVs occurred (Appendix 7).

In terms of BC, mutations produced a fairly consistent
pattern of changes to the network when compared to the
wild type. In renin, significant changes could be seen in 7
regions, depicted in Figure 5. Interestingly, mutations
resulted in significant changes to the network in regions far
from where the SNV was located. Additionally, affected
regions were centered around the interface between the
proteins. This is not surprising, as the interface is a high
traffic zone for network communication and, as such,
mutations that shift these areas slightly could have a sig-
nificant impact on interprotein communication.

Mutations have a similar effect on angiotensinogen.
Changes in BC are most notable in 5 regions (Fig. 6).
Although 4 of these regions were located at the complex
interface, the region consisting of residues 430 to 443
(white) did not contain any interacting residues.

Regions in the complex revealed by the analysis of
DBC may depict areas that reorganize to compensate for
mutations. Such reorganization would be important for the
protein to retain its function when mutations occur.

When analyzing DL/L, 2 mutants, in particular,
caught the eye. The first was ang_P40L. The average
DL/L for ang_P40L was high across most of the second
half of the renin sequence (from approximately residue
245 until the end of the sequence), as can be seen in
Figure 7. Looking at the contact network for residue 40
of angiotensinogen (Fig. 8), we can see that 2 prominent
contacts in the wild type (PRO40.B-THR84.A and
PRO40.B-HIS367.A) that are maintained consistently
throughout the simulation of the wild type (99.8% and
100% of the time, respectively) are reduced to occasional
contacts in the mutant (20% and 39.2% of the time,
respectively). Upon further examination of the structure
(Fig. 9), we see that THR84.A and HIS367.A are
important residues for providing access to the part of the
structure with increased DL/L. As such, it can be seen
that the loss of these contacts results in decreased
accessibility to the back half of renin—an increased DL/L
means that the average path to these residues is
increased. Further work is required to determine
whether this loss in accessibility would result in negative
effects, such as a reduced ability of renin to cleave
angiotensin 1 from angiotensinogen.

The second interesting mutant was ren_A188V. In
contrast to ang_P40L, the average DL/L remained relatively
constant across this complex. However, when looking at
GLOBAL HEART, VOL. 12, NO. 2, 2017
June 2017: 121-132



gSCIENCEj

the standard deviation (Fig. 10), it can be seen that the DL/
L of ren_A188V fluctuated heavily across most of renin and
parts of angiotensinogen. Looking at the residue contact
map of ren_A188V (Fig. 11), the VAL188.A interacts with
PHE41.B more often than ALA188.A in the wild type
(71.4% vs. 8.5% respectively). As PHE41.B is in a loop
region, which is likely flexible, interacting with this residue
may cause the renin structure to shift more. That the
contact happens 71.4% of the time in the mutant also
means that the bond is being continuously broken and
reformed, which could also explain the fluctuation.
DISCUSSION
The RAS plays an important role in regulating arterial
blood pressure and plasma sodium levels. Hyperactivity of
this system has been linked to numerous conditions
including hypertension, kidney disease, and congestive
heart failure. The literature and human genome databases
report a large number of variations linked to both proteins;
renin and angiotensinogen. For drug development pur-
poses, it is important to understand how these variations
are affecting the system. Thus, in this study, we aimed to
identify SNVs that have functional and potentially
damaging effects on the renin-angiotensinogen complex.
For this purpose we utilized a protocol recently proposed
by our group [35], and used structural bioinformatics and
network analysis techniques to analyze the effects of SNVs
at the interface between renin and angiotensinogen.

A comprehensive set of all known SNVs (317 in renin
and 212 in angiotensinogen proteins) was extracted from
the HUMA database. This dataset was filtered by removing
synonymous and missense variants and then using the
VAPOR pipeline to predict which variants were likely to be
deleterious. Further filtering was done to identify SNVs in
the interface, which left us with a final data set of 9
angiotensinogen, 6 renin SNVs, and their combinations.

A total of 25 successful MD simulations were run to
perform this analysis. All the MD trajectories were analyzed
by RMSD and RMSF calculations and combined with
network analysis. This research identified important SNVs
and let us understand why certain variations have delete-
rious effects on the proteins by linking the structural vari-
ation(s) to the function. For instance, of the 25 MD runs,
only the complex containing the SNV, P40L, in angio-
tensinogen did not stabilize after 100 ns. RIN analysis
further showed that this mutation plays an important role in
the interaction between renin and angiotensinogen, and this
mutation caused a loss of interaction between position 40 in
angiotensinogen and position 84 and 367 in renin. This
resulted in a significant decrease in the accessibility of a
large section of the renin structure.

Additionally, it was found that the complex containing
the SNV, A188V, in renin was subject to significant fluc-
tuation in DL/L. This was potentially due to increased
interaction between position 188 in renin and position 41
in angiotensinogen.
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Another important finding was the identification of the
increased rigidity in some if the mutant complexes relative
to the wild type. It was especially noticeable in the complex
containing the D104N variation in renin. According to
HUMA, this SNV is associated with renal tubular
dysgenesis.

CONCLUSIONS
On the basis of these results, we found that using network
analysis techniques in combination with MD provided
useful insights into the function of the protein complex. It
was especially useful for finding important interacting
residues, such as PRO40 in angiotensinogen and HIS367
and THR84 in renin. However, areas of high and low DBC
and DL/L do not correlate directly with RMSF. This may be
due to the fact that RMSF measures the movement of a
residue, whereas network analysis techniques such as BC
and L also take the movement of surrounding residues into
account. In other words, a change in the BC and L of a
residue does not necessarily mean that that residue is, itself,
moving. It might be that the residues around it are moving,
affecting shortest paths that usually traverse it. As such,
network analysis should be used in conjunction with
RMSF to fully understand the movement of a protein or
protein complex.
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