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SUMMARY

Genome-wide association studies have been published since 2005 and remain exemplary in translating
knowledge fostered by the human genome project into genomic lessons on health and disease. Although
our understanding of the basis of complex disease remains by far incomplete, the knowledge of the genetic
basis of cardiovascular risk factors and their end organ damage has been significantly improved. The
Framingham Heart Study was one of the earliest population-based studies to apply genomic methods and
is an important contributor to large disease-based consortia as the International Consortium for Blood
Pressure Genome-Wide Association Studies, the Global Lipids Genetics Consortium, the Diabetes Genetics
Replication and Meta-Analysis Consortium, and the Coronary Artery Disease Genome-Wide Replication
and Meta-Analysis Consortium. The variability of these cardiovascular risk factors is partly genetic and
knowledge on the genetic basis originated largely from analysis of monogenic disease in rare syndromes
before the use of genome-wide, common single nucleotide polymorphism analysis. Genome-wide
association studies have identified w45 common variants associated with systolic and diastolic blood
pressure, w65 common variants for type 2 diabetes, and w95 common variants for lipid traits. One
major type of end organ damage is coronary heart disease, and w25 loci could be shown to be associated.
Risk scores using multiple cardiovascular risk factor single nucleotide polymorphisms are clearly correlated
with cardiovascular outcome. This review summarizes recent findings by genome-wide association studies
and the contributions by the Framingham Heart Study on the basis of seminal papers and gives an outlook
on some of the future experiments.
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After theoretical considerations on the usefulness of
genome-wide association studies (GWAS) [1], the first
clearly significant genome-scans in 2005 suggested the
possibility that GWAS using common variants might
explain a large proportion of trait variabilities [2e4]. The
very next year, the second set of GWAS published [5]
indicated that only little of the trait variability, QT
interval length in this case, is explained by common vari-
ants, although the sample sizes of these early experiments
were small. Based on The National Human Genome
Research Institute GWAS catalog [6], 1,443 GWAS have
been published in the meantime [7]. Of 237 unique
associated single nucleotide polymorphisms (SNPs)
currently in the database for which effect sizes are provided
in units of standard deviation, the average effect size is 0.09
SD units and only 4% (9 of 236) have an effect size of
greater than 0.2 SD units. This observation emphasizes
a key finding that effect sizes of individual genetic variants
are small in the great majority of cases.

There is no doubt that GWAS have contributed to our
understanding of complex genetic disease, even though
little of phenotypic variance is explained so far for most
traits. It is very clear now that for the 3 principal modifiable
cardiovascular risk factors (smoking is not considered
here), there exist genetic variants with large effect sizes that
are rare (for lipids and diabetes) to extremely rare (for
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blood pressure [BP]) and these are typically encountered in
a syndromic, familial context. Given the population
frequencies of variants with large effect sizes identified in
family studies, the phenotype variance explained is very
small, as only few individuals carry these variants. There-
fore, the great majority of genetic variability is due to other
types of genetic variation. GWAS explore this type of
variation.

This review highlights some of the principal GWAS
findings for BP, blood lipids, diabetes, and coronary artery
disease (CAD) by the International Consortium for
Blood Pressure Genome-Wide Association Studies (ICBP),
the Global Lipids Genetics Consortium (GLGC), the
Diabetes Genetics Replication and Meta-Analysis
Consortium (DIAGRAM), and the Coronary Artery
Disease Genome-Wide Replication and Meta-Analysis
Consortium (CARDIoGRAM). Common variants associ-
ated with these phenotypes discovered by GWAS have
small effect sizes, but collectively they explain a sizable
fraction of the phenotypic variability (Fig. 1). The review
concentrates on 4 seminal reports that represent to date
the largest GWAS efforts on these phenotypes. The
Framingham Heart Study (FHS) is an important
contributor in all 4 studies. The review summarizes the
loci identified across studies, but it does not systemati-
cally include further information from additional studies.
59

mailto:georg@rhone.ch
http://dx.doi.org/10.1016/j.gheart.2012.12.010
http://dx.doi.org/10.1016/j.gheart.2012.12.010


FIGURE 1. Key features of cardiovascular risk and
coronary artery disease (CAD) genome-wide association
studies consortia. The consortium name is given in bold
type. For each consortium, the total maximal sample
size, the number of loci discovered, and the percent of
total trait variance explained is indicated. CARDIoGRAM,
Coronary Artery Disease Genome-Wide Replication and
Meta-Analysis Consortium; DIAGRAM, Diabetes Genetics
Replication and Meta-Analysis Consortium; GLGC, Global
Lipids Genetics Consortium; ICBP, The International
Consortium for Blood Pressure Genome-Wide Association
Studies; T2D, type 2 diabetes.
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OPPORTUNITIES BY GWAS FOR OUR
UNDERSTANDING OF CARDIOVASCULAR RISK
FACTORS
Individuals and patients are made unequally: Some become
centenarians with little medical intervention; others die
young of a potentially preventable disease such as
myocardial infarction. Many efforts are made in medicine
to change the “nurture” side of this equation, but it is
TABLE 1. Heritability of principal cardiovascular risk factors and

coronary artery disease

Heritability [reference]

SBP 42% [9]

DBP 39% [9]

T2D 26% [10]

TC 64% [11]

LDL-C 66% [11]

HDL-C 58% [11]

TG 42% [11]

CAD 56% [12]

For SBP and DBP, single-visit heritability is indicated. The estimates

for long-term average phenotypes appear considerably higher (0.57
for SBP and 0.56 for DBP) [9]. CAD, coronary artery disease; DBP,
diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pres-
sure; T2D, type 2 diabetes; TC, total cholesterol; TG, triglycerides.
interesting to remind the reader that “nature” [8] explains
close to half of the phenotypic variation of cardiovascular
risk factors [9e12] (Table 1). The precise estimates have
been subject to critique [13], but it appears unlikely that
heritability estimates are very far from the true underlying
heritability. Surprisingly, despite the huge impact of major
cardiovascular risk factors on population health, most of
the risk factors’ pathogenesis remains poorly understood,
despite considerable progress documented in other papers
of this series. Further improvement of the understanding of
the mechanisms of cardiovascular risk factors and their
relationship with outcomes will likely lead to improved
chances for intervention.

For a number of years, there has been a great oppor-
tunity to use genomics in cardiovascular medicine to help
better understand the pathogenesis as well as the rela-
tionship of cardiovascular risk factors with outcomes. One
beautiful thing about GWAS is their unbiased approach to
discovery [14]. GWAS approaches have been criticized,
and much of the critique is due to characteristics necessary
to obtain very large sample sizes. The sample assembly and
data file review stage of a typical experiment might
sometimes resemble “factory-like” science, but these are
necessary means to reach the objective of sufficient statis-
tical power by large sample sizes.

GWAS have explained only a small fraction of total heri-
tability so far for most traits, and currently a major proportion
of heritability is unexplained by common variants (“missing
heritability”) [15]. Although the explanations formulated to
explain this observation are multiple, experimental proof is
outstanding. A corollary is that more of the heritability will be
explained by future experiments, and GWAS-based and non-
GWAS methods still have great potential.
STATISTICAL POWER IN GWAS AND RANGES OF
TARGETED ALLELE FREQUENCIES
One important point for GWAS is the necessity to
overcome the burden of multiple testing. Therefore,
considerations of statistical power are central to GWAS.
Typically, many more than 1 million genetic variants are
tested, but genetic variants are correlated (linkage
disequilibrium). It is generally accepted that for common
variants in participants of European ancestry, the correla-
tion between SNPs leads to w1 million effective tests, even
if nominally more variants are tested, leading to a typical p
value significance threshold of 5 � 10�8 (Bonferroni
correction of p ¼ 0.05 divided by the effective number of
tests [0.05/1000,000]). Given that such significance
thresholds can only be reached with a large number of
participants, most recent GWAS are meta-analyses of
multiple smaller studies and include at least hundreds,
often many thousands of participants.

The 3 determinants of statistical power are: 1) sample
size; 2) allele frequency; and 3) the effect size of the vari-
ants. Table 2 shows the necessary sample sizes to reach
80% statistical power with effect sizes typically observed in
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BP GWAS (0.05 SD) at 2 scenarios of allele frequencies.
The reader can observe that the required sample size is
large, but in the reach of current studies using common
variants for the phenotypes described in this review. There
is the hope that the effect sizes will be larger for more rare
variants that will be evaluated in future experiments by
genotyping or sequencing. The effect size increases while
the minor allele frequency decreases [16], and it is unclear
to date how far the increase in effect size can compensate
the decrease in allele frequency as both are determinants of
statistical power.

LOCI ASSOCIATED WITH SYSTOLIC
AND DIASTOLIC BP
GWAS on BP and hypertension have been difficult, and the
FHS has contributed to the first efforts under the guidance
of FHS leadership [17]. The reason for the difficulties to
find BP-associated variants in these first studies can be
attributed today to low statistical power given the small
effect sizes of an individual variant. A sample size of
>30,000 is necessary to reach 80% power with an effect
size of 0.05 SD, which is typical for BP GWAS (see
Table 2), even at maximal minor allele frequencies (0.5).
The first studies by the Wellcome Trust Case Control
Consortium and the early FHS studies were clearly
underpowered given their large, but limited sample size.
Therefore, it became clear quickly that even the large
population-based studies do not reach sufficient sample
sizes individually. Consequently, multiple visionary studies
confederated in 2007 to form consortia with a sample size
reaching the critical threshold. The FHS was among the
founding members of the Cohorts for Heart and Aging
Research in Genomic Epidemiology Consortium (CHARGE)
consortium [18,19], a consortium that has been extremely
successful not least because of synergies across multiple
phenotype groups. The other 4 founding members of
CHARGE are: the Age, Gene, Environment, Susceptibility
Study - Reykjavik (AGES), the ARIC (Atherosclerosis Risk in
Communities Study), the CHS (Cardiovascular Health
Study), and the Rotterdam Study (RS). Currently, the total
number of participating studies is larger than 10, which
increases the total sample size to more than 70,000
participants.
TABLE 2. Statistical power in GWAS

Sample Size Needed for

80% Statistical Power

eff. size: 0.05 SD, MAF 0.5 31,681

eff. size: 0.05 SD, MAF 0.1 88,003

eff. size: 0.5 SD, MAF 0.01 8,001

eff. size: 0.5 SD, MAF 0.001 79,282

The sample size needed to reach 80% statistical power is indicated
for different scenarios of effect sizes (eff. size) of a variant
(expressed in standard deviations [SD] of the phenotype) and the
minor allele frequency (MAF) of the variant. Alpha is 5 � 10�8.
GWAS, genome-wise association studies.
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The initial GWAS meta-analysis of the CHARGE-BP
working group under the leadership of Dr. Dan Levy
could identify 8 loci associated with systolic blood pressure
(SBP) or diastolic blood pressure (DBP) at a genome-wide
significant level in 29,136 participants [20]. The study was
published in 2009 conjointly with a study by the Global
Blood Pressure Genetics Consortium (Global BPgen) that
had identified 8 partially overlapping loci using a similar
sample size [21]. Two of the 8 top SNPs in CHARGE-BP
were in strong linkage disequilibrium with a non-
synonymous coding SNP. Other key findings of the 2
studies were that effect sizes of individual variants are
small, w1 mm Hg for SBP and w0.5 mm Hg for DBP,
although the joined effect of multiple risk alleles observed
in the population was shown to be several mm Hg, which
is substantial given that observational data indicate a pro-
longed increase of 5 mm Hg in DBP to be associated with
a 34% increase in the risk for stroke and 21% increase in
the risk of coronary events [22]. The total phenotypic
variance explained by the 8 variants identified by the
CHARGE-BP working group was w1%. Most of the genes
near the identified variants are in pathways completely
unsuspected to be associated with BP before these studies.

The most comprehensive experiment to date is the
joint meta-analysis of data by the CHARGE-BP and Global
BPgen consortia, including additional studies, that came
together and formed the ICBP with a total sample size of
up to 200,000 samples, again including the FHS [23].
Figure 2 indicates the 29 SNPs identified to be associated
with SBP and DBP in this study by physical position,
including all the variants published by CHARGE-BP
previously. The key additional findings of ICBP were that
a risk score based on the 29 variants is associated with
hypertension, left ventricular wall thickness, stroke, and
CAD, but not with any of the 5 parameters of kidney
disease or kidney function tested. This might be explained
by a weaker association between the risk score and the
kidney phenotypes versus with stroke and CAD, or by
a reverse causal relationship in that BP is a consequence
rather than a cause of kidney disease. Most of the associ-
ated SNPs could be shown to be associated with BP in
multiple ethnicities (East Asian, South Asian, and partici-
pants of African origin were tested), suggesting a surprising
transethnic effect. Eight of the 29 SNPs were in strong LD
(r2 > 0.8) with a nonsynonymous coding SNP, suggesting
a functional role. There was some evidence for enrichment
of expression SNPs near the 29 SNPs identified. Body mass
index- and sex-interaction effects, metabolomic signatures,
or enrichments of pathways could not be demonstrated to
be significant.
ASSOCIATIONS WITH BLOOD LIPIDS
There are 4 major clinically used blood lipid levels: total
cholesterol, low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), and triglyc-
erides. The FHS has contributed importantly to the current
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FIGURE 2. Top genetic variants identified for risk factors (blood pressure [BP], blood lipids [LIPIDS], type 2 diabetes
[T2D]) and coronary artery disease by physical position. SNPs, single nucleotide polymorphisms.
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knowledge on the blood lipid epidemiology and the clin-
ical impact of cholesterol levels, for example, total
cholesterol is part of the Framingham risk score [24]. Only
the contribution of the FHS to the genomics of blood lipid
levels is discussed in more detail here.

After publications based on smaller sample sizes,
among them the FHS [25], to date the largest publication of
blood lipid level loci is by the GLGC [26]. In this experi-
ment on w100,000 individuals of European origin in
discovery, 95 lipid loci were discovered and 59 were new
(the variants identified are shown in Fig. 2). The general
principles that emerge from these data on lipid traits follow.
1) Collectively, the 95 loci explain 10% to 12% of the total
trait variance in the FHS, a much larger fraction of total
variance when compared with the analyses on BP (see
Fig. 1). 2) Comparing the effect of the directions of the
association signals in different ancestries, the investigators
were able to provide evidence that lipid variants show
association in individuals of East Asian, South Asian, and
African American ancestry based on an analysis of indi-
viduals with extreme blood lipid levels, suggesting, again,
that the variants identified act across multiple ethnicities. 3)
Of the genes near the 95 loci identified, a number are
known lipid regulators (CYP7A1, NPC1L1, SCARB1), but
the great majority was unsuspected to be linked to blood
cholesterol levels previously. 4) Three genes (GALNT2,
PPP1R3B, and TTC39B) near discovered variants were
demonstrated to increase lipid levels in mouse models.
Among the additional findings were that 4 of the 95 loci
identified in the primary analyses showed a significant sex-
interaction effect. Expression quantitative trait loci close to
the associated SNP in the liver, the omental fat, and the
subcutaneous fat were identified. Using an allelic dosage
risk score, the GLGC investigators could show that top and
bottom quartile contrasts show a 13� increased risk for
elevated LDL-C blood levels.

It is clearly established that elevation of blood LDL-C
levels plays a causal role in CAD. There is clear evidence
that triglycerides and HDL-C levels are associated with
CAD, but a causal role has been questioned, particularly for
HDL-C for which blood level lowering treatment has failed
to show cardioprotective effects [27], and there is more
recent genetic evidence in the form of Mendelian
randomization studies [28]. Fourteen SNPs identified to be
associated with blood lipids in the GLGC study were also
associated with CAD, and most of these were SNPs iden-
tified using LDL-C levels, in line with the existing evidence
that LDL-C is causally linked to CAD. Four of the SNPs
associated with CAD showed exclusive significant associ-
ation with HDL-C or triglycerides, but not with LDL-C,
opening potential future avenues for investigations of the
phenomenon.

TYPE 2 DIABETES LOCI
The DIAGRAMConsortium analyzing type 2 diabetes (T2D)
has completed GWAS analyses based on the HapMap
backbone [29] and is the first of the large phenotype
GLOBAL HEART, VOL. 8, NO. 1, 2013
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consortia discussed here to have published ameta-analysis of
data based on the Human Cardio-Metabo BeadChip
(Illumina, San Diego, CA) [30]. Among the advantages of
the CardioMetabochip platform is a relatively favorable
cost that enables genotyping in very large sample sizes.

The GWAS experiment had a total sample size of
47,117 in discovery (8,130 cases and 38,987 control cases)
with follow-up in an additional 94,337 individuals (34,412
cases and 59,925 control cases), among them the FHS. In
the GWAS study, 12 additional T2D loci were identified in
addition to the w25 T2D loci previously known and
another 8 loci were identified in the recent
CardioMetabochip study, bringing the total number to 64
(see Figs. 1 and 2). The general principles that emerge from
these studies are as follows. 1) Overall, w6% of the total
phenotypic variance is explained by the loci discovered. 2)
The effect sizes are small (odds ratio of 1.06 to 1.14 for
autosomes). 3) Many of the loci discovered were previously
unsuspected to be associated with T2D, but some had
previous evidence from monogenic T2D. 4) One T2D locus
is located on the X-chromosome. 5) Two loci (TCF7L2 and
BCL11A) showed effect size heterogeneity when analyzed
stratified by obese and nonobese individuals, whereas no
strong evidence for age-of-diagnosis effects was found. In
the CardioMetabochip analysis, 2 loci showed sex-
differentiated association. Additional findings were that 7
of the 12 loci of the GWAS analysis are also associated with
phenotypes other than T2D. Not unexpectedly, a positive
correlation between the SNP-association results with T2D
and the SNP-association results with anthropometric traits
(GIANT Consortium) [31] and continuous measures of
glucose blood levels (MAGIC Consortium) [32,33] were
observed. In pathway and protein-protein interaction
analyses, a signal on cell-cycle regulation emerged across
different approaches (additionally CREBBP-related tran-
scription, adipocytokine signaling, and other pathways).
Analyses in the CardioMetabochip effort suggest a large
number of currently nonsignificant variants with small
effect sizes.
CAD GWAS
One major disease consequence of the cardiovascular risk
factors mentioned previously that is discussed briefly here is
CAD. Currently, the largest GWAS on CAD included
22,233 cases and 64,762 control subjects of European
ancestry [34] in the CARDIoGRAM Consortium to which
the FHS contributed. The findings were replicated by
follow-up in 56,682 additional individuals. This study
identifies 13 novel loci for CAD, bringing their total number
to w25 (Figs. 1 and 2). The principal findings were as
follows. 1) Most of the loci are in regions previously
unsuspected to be associated with CAD. 2) The effect sizes
are small and increase risk by 6% to 17% per allele, and
w4% of the phenotypic variance is explained. 3) Three of
the loci are also associated with traditional cardiovascular
risk factors; 5 show pleiotropic effects; and 3 top SNPs were
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64
expression SNPs. 4) A decile contrast of a weighted allelic
risk score shows an increase of CAD risk of w3�.

OUTLOOK
A significant increase in the number of loci discovered to
be associated with each of the phenotypes discussed in this
review is to be expected in the near future starting with the
publication of the results based on CardioMetabochip
genotyping by the GLGC, the ICBP, and the CARDIo-
GRAM Consortium. Subsequent experiments will address
different allele-frequency ranges (exome chip, sequencing)
[35]. The field is waiting for creative experiments to
identify still more of the missing heritability of the major
cardiovascular risk factors. The current clinical utility of the
variants identified for cardiovascular risk factors and stroke
is largely undefined.

CONCLUSIONS
Starting from little, an impressive body of data on the
genetic basis of common cardiovascular disease and
cardiovascular risk factors has accumulated over the last 5
years, as shown by the synopsis of variants identified for
BP, blood lipids, T2D, and CAD in Figure 2. The hope is
that the improved understanding of the mechanisms of
cardiovascular disease and cardiovascular risk factors will
permit improved patient treatment and the discovery of
new, potentially more efficient, therapeutic agents. This is
also particularly important also for low- and middle-
income countries where 80% of all cardiovascular deaths
occur [36].

After the tremendous impact that the FHS has had on
the understanding of cardiovascular disease on the epide-
miological level, the FHS has used and continues to use the
unique resource available for important contributions to
the discovery of the genetic origin of cardiovascular disease
to which it should be firmly congratulated.
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