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The predisposition for developing cardiovascular
disease (CVD) can start as early as our development
in thewombwhere alterations in the intrauterine envi-
ronment, such as malnutrition, stress, and environ-
mental exposures, result in a higher vulnerability of
the offspring to develop diseases later in life. House-
hold air pollution from cooking and heating with
wood and other biomass fuels has been shown to
contribute to the development of CVD in adults,
but the relationship of household air pollution expo-
sure and the early origins of CVD remains largely
unexplored. In this paper, we review the evidence link-
ing in utero and/or childhood exposures to tobacco
smoke and ambient air pollution exposures with the
development of CVD in later life, as well as identify
important knowledgegaps and research opportunities.

Cardiovascular diseases (CVD) are the leading
contributor to the global burden of disease,
accounting for over 17 million deaths in 2004 [1].
The global CVD burden is projected to increase
with its distribution continuing to shift toward
low- and middle-income countries (LMIC), a
progression driven by substantial CVD declines in
high-income countries and a sharp rise in CVD in
LMIC over the past several decades.

Physiopathological and epidemiologic evidence
suggest that precursors of CVD begin very early in
life, even though they manifest in adulthood. In
1985, the landmark PDAY (Pathobiological Deter-
minants of Atherosclerosis in Youth) study aimed to
improve knowledge of the natural history of athero-
sclerotic disease in children and young adults in the
United States. The objective was to investigate the
associations between early signs of atherosclerosis
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among children and young adults with known risk
factors for adult coronary heart disease. A total of
3,000 specimens were collected and fatty streaks,
early and advanced atherosclerotic lesions, were
identified in adolescents and young adults many
years before the occurrence of coronary heart
disease [2]. They also found that known risk factors
for CVD in adults such as tobacco smoking, obesity,
and hypertension were associated with atheroscle-
rotic lesions in adolescents and young adults, sup-
porting the concept that the development of CVD
starts in the first decades of life.

Around this same time, British epidemiologist
David Barker began gathering evidence on the links
between infant health and the later development of
disease, in particular identifying a strong correlation
between poor maternal nutrition, low birth weight,
and the later-life development of CVD in those
low birth weight infants [3,4]. This and further
studies helped formulate the fetal origins of adult
disease hypothesis, better known as the “Barker
hypothesis” or the “Developmental Origins of
Health and Disease hypothesis” [5,6], which postu-
lates that alterations in the intrauterine environment
during pregnancy, particularly undernutrition of the
mother, influence the developing fetus and predis-
pose it to the development of diseases in adulthood.
In recent decades, both animal and human studies
have gathered additional evidence in support of
this hypothesis with associations between poor
maternal nutrition and other health outcomes in
their offspring including diabetes [7], lung diseases
[8], cancer [9], and osteoporosis [10]. Other risk
factors during pregnancy including maternal
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hypertension and diabetes, obesity, stress, and envi-
ronmental exposures, such as tobacco smoking, have
also been correlated with adult disease in offspring.

The increasing CVD trend in LMIC can in part
be attributed to demographic and social changes
including economic growth and globalization, life-
style changes with urbanizing societies, and
increased life expectancy. Surveillance data from
Bangladesh show a several-fold increase in noncom-
municable disease mortality over the last 20 years,
over 70% of which is attributable to CVD [11].
However, the disproportionate burden of CVD in
populations that have been exposed to malnutrition
and environmental exposures for generations speaks
to a greater role of developmental origins, in partic-
ular environmental determinants.

Household air pollution (HAP) from use of solid
fuel (i.e., biomass and coal) for cooking and heating
is a major environmental exposure and leading
contributor to the global burden of disease [12].
Incomplete combustion of solid fuel emits high
levels of air pollution, including known health
hazards such as particulate matter, benzene, carbon
monoxide, formaldehyde, naphthalene, nitrogen
dioxide, polycyclic aromatic hydrocarbons (espe-
cially benzo[a]pyrene), radon, trichloroethylene,
and tetrachloroethylene [13]. Women and young
children in LMIC are particularly vulnerable to
HAP exposure as they spend the most time near
the domestic hearth [14]. In fact, an estimated
80% of total air pollution exposure occurs indoors,
rather than outdoors, in LMIC [15].

Mounting evidence shows an association
between HAP and a range of health outcomes
including respiratory illnesses in adults and children
[16,17], cancer [18], and more recently, cardiovas-
cular outcomes such as higher blood pressure
[19,20] in adults. A recent cross-sectional study
examined the impact of personal exposure to HAP
on blood pressure in school-aged Chinese children
[21]. However, no other studies have investigated
the potential contribution of HAP exposure in utero
or in early childhood to the later development of
disease, and in particular CVD, despite the magni-
tude and increased vulnerability of exposure to HAP
in utero (via mother’s exposure) and during child-
hood and growing evidence of CVD impacts from
early life ambient air pollution and tobacco smoking
exposures. With the increasing global epidemic of
CVD in LMIC, there is a pressing need to inform
the development of interventions and policies that
affect multiple CVD determinants and provide
protection over the life course.
In this review, we will present current evidence
linking in utero and/or childhood exposures to
environmental pollution exposures with the devel-
opment of CVD later in life, focusing on environ-
mental tobacco smoke and ambient air pollution
exposures because they are likely the most relevant
to HAP exposures. When we refer to early origins
of disease, we are including a time that spans from
conception to pre-pubertal age (around 12 years
old). We will also identify important knowledge
gaps and opportunities for future research.

I N U T E RO AND ENV I RONMENTA L
E X PO SU R E TO PAR EN TA L TOBACCO
SMOK I NG

The association between in utero tobacco smoke
exposure and CVD risk factors in individuals whose
mothers smoked during pregnancy is the subject
of several recent investigations. A study in the
Netherlands [22] looked at the effect of maternal
smoking (self-reported by mothers during pre-
natal visits) on blood pressure (BP) in infant
offspring at 2 weeks of age. The analysis showed
higher systolic BP (5.4 mm Hg) in infants whose
mothers reported smoking during pregnancy.
However, observational cohort studies with children
ages 4 to 8 years old in other countries found either
no effect of in utero maternal smoking on offspring
BP [23e27] or even a small increase in systolic BP
[28e31]. It is important to note, that most of these
observational studies failed to account for post-natal
environmental tobacco smoke exposures. However,
a cross-sectional study in Germany found a small,
but positive relationship between post-natal parental
smoking and BP (systolic: 1.0 mm Hg; diastolic: 0.5
mm Hg) in healthy preschool children [32].

Other CVD markers, have been associated with
maternal smoking during pregnancy. Aortic intima
media thickness (IMT) was significantly greater in
a group of 28 Turkish neonates whose mothers
smoked during pregnancy [33]. Similar results
have been shown for carotid artery IMT in 5-
year-olds [34] and young adults [35] exposed to in
utero maternal smoking in the Netherlands. Expo-
sure to environmental tobacco smoke was associated
with attenuated endothelial function and decreased
elasticity of abdominal aorta in pre-pubertal Fi-
nnish children [36,37].

In animal models, perinatal tobacco smoke expo-
sure in mice has been shown to increase adult
atherogenesis by increasing mitochondrial damage
and oxidative stress [38,39]. Similar studies in
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nonhuman primates demonstrated low mitochon-
drial SOD2 activity and decreased SOD2 protein
levels, as well as mitochondrial damage as shown
by increased levels of mitochondrial deoxyribonu-
cleic acid damage and lower levels of cytochrome
oxidase (complex IV) in aortic tissues [40].
Oxidized proteins were significantly higher in
monkeys exposed to tobacco smoke in utero.
Further, histological analysis of abdominal aortic
tissue samples showed indications of early athero-
genic changes as indicated by an increased number
of cells within the subintima. Together, these
animal studies indicate that perinatal tobacco smoke
induces in the offspring very early changes at the
vascular level by inducing mitochondrial damage
and promoting atherosclerosis.

Dyslipidemia and obesity are risk factors for the
development of CVD. The effects of maternal
smoking on her progeny’s lipoprotein profile are
currently under investigation. A cross-sectional anal-
ysis of 4,297 subjects in Brazil found high-density
lipoprotein cholesterol differences (2.10 mg/dl; 95%
confidence interval [CI]: e3.39 to e0.80) for
offspring of smokers compared with offspring of
nonsmokers [41]. However, no other cardiovascular
risk factors, including BP, were affected in exposed
children.Data from animalmodels have shown either
no changes in high- or high-density lipoprotein with
tobacco smoke exposure [38] or a significant increase
[42]. Interestingly, a study byNg et al. [42] found that
mice exposed to tobacco smoke in utero and fed
a high-fat diet gained more weight and experienced
a greater increase in their lipoprotein concentrations
than unexposed mice on the same high-fat diet,
although this effect was only observed in female mice.

The placenta has been shown to be a critical
organ in the area of developmental programming
[43,44]. Several factors can affect placental develop-
ment, which could later alter placental function. In
the Netherlands, maternal smoking was associated
with an increased resistance in uterine, umbilical,
and middle cerebral arteries. Fetal and birth weights
were reversely correlated with umbilical artery
resistance [45]. Several studies examined the rela-
tionship between placental function and tobacco
smoking, in particular carcinogenic polycyclic
aromatic hydrocarbons (PAH), which have been
associated with adult CVD [46]. Whether PAH
cross the placentaleblood barrier remains a subject
of current investigation. Several studies indicate
that PAH reach both placental and cord blood,
and that elevated PAHedeoxyribonucleic acid
adducts are correlated with low birth weight
and reduced length and head circumference in
offspring [47]. Others suggest that tobacco smoking
increases placental metabolism of PAH during
pregnancy [48], which is indicative of transplacental
transport. However, a recent study showed a protec-
tive effect of the placental barrier against some
tobacco components, including PAH, suggesting
an impedance of transplacental transfer of PAH to
the fetus [49].

Even though evidence from both animal and
epidemiologic studies strongly suggests a relation-
ship between in utero and environmental exposure
to tobacco smoke and development of CVD risk
factors, the current evidence is scattered and some
of the data inconsistent, in particular as it relates
to BP.

AMB I E N T PA R T I C U LA T E MAT T E R A I R
PO L LU T I ON

There is a large and growing body of literature on
the relationship between particulate matter (PM)
air pollution and CVD outcomes in adults. PM
air pollution exposure has been associated with
increased risk of myocardial infarction, stroke, and
cardiovascular mortality as well as subclinical inflam-
mation [50]. Studies in Italy have reported that expo-
sure to PM and gaseous air pollutants is associated
with blood hypercoagulability and deep vein throm-
bosis, which may cause cardiac events [51,52]. Less
intensive exposure to pollutants other than smoking
has also been implicated for early origins of adverse
cardiovascular outcomes. Carotid artery stiffness
has also been shown to be higher among children
living in more polluted areas (closer to main road)
than in less exposed children [53]. It is likely that
exposure to ambient air pollution can initiate athero-
sclerosis, evoke inflammatory and pro-thrombotic
effects, and elevate the risk of CVD in children
[54]. Limited evidence suggests possible adult
cardiovascular effects of PM pollution from cooking
with wood fuel, including higher BP [19,20] and
increased risk of diabetes and stroke [55].

Despite the increased vulnerability of children to
environmental exposures such as PM air pollution
[56], relatively little is known about its effects on
cardiovascular and chronic systemic responses in
healthy children, with very few studies focusing on
the relationship between air pollution and develop-
mental origins. A recent cross-sectional study found
no relationship between measured personal PM
exposure and BP among Chinese children in house-
holds cooking with wood [21]. Studies on pregnant
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women’s PM pollution exposures and the subse-
quent health outcomes of their offspring are lacking,
in particular as they relate to HAP and CVD.

Although no studies have been published on the
effect of in utero exposure to ambient PM, a recent
study in Mexico reported positive associations
between short-term ambient PM exposure and
day-to-day elevations in inflammatory markers
including interleukin 1 in children [57]. Chronic
exposure to elevated fine PM (particles <2.5 mg
in diameter [PM2.5]) was also associated with
increased levels of circulating endothelin 1 and
elevated mean pulmonary arterial pressure in chil-
dren [58]. A study in Iran found that previous
7-day exposure to coarse PM (particles <10 mg in
diameter [PM10]) was independently associated
with worse metabolic insulin sensitivity among
374 children ages 10 to 18 years [59]. This study,
along with several in adult populations not reviewed
here, suggests that systemic proinflammatory and
oxidative responses due to long-term PM air pollu-
tion exposure could potentially increase the risk of
developing clinically important aspects of the meta-
bolic syndrome, such as diabetes mellitus.

Prenatal exposures to ambient PM2.5 have been
linked to low birth weight, and a recent study [60]
in the United States found that certain chemical
constituents of PM2.5, in particular those emitted
from fuel oil combustion, were more strongly asso-
ciated with lower birth weight than PM from other
sources. Maternal exposure to HAP from biomass
combustion has also been reported to be associated
with low birth weight and pre-term delivery
[61,62], with a recent meta-analysis estimating
that as much as 21% of global low birth weight is
attributable to HAP exposure during pregnancy
[63]. Such a strong contribution of HAP to poor
fetal growth has implications for CVD risks later
in life as already discussed in this paper. Biological
mechanisms for explaining how exposure to air
pollutants affect birth outcomes (low birth weight/
intrauterine growth retardation/pre-term delivery)
have been reviewed elsewhere [64], suggesting that
processes such as oxidative stress, inflammation,
endothelial dysfunction, hemodynamic responses,
and disturbances of rheological factors are likely to
be involved.

An animal study looking at the effects of PM air
pollution on placental morphology found that fetal
weights were lower in the offspring of air
pollutioneexposed mice. There was also a decrease
in placental weight with a change in morphology,
including reduced volumes, calibers, and surface
areas of maternal blood spaces but greater capillary
surfaces and diffusive conductance in the fetus
[65]. These changes could be interpreted as fetopla-
cental adaptations to maintain and expand oxygen
and nutrient delivery to the growing fetus because
maternal blood delivery to the placenta seems to
be compromised. The actual mechanism involved
in those changes remains to be elucidated.

I N S I GH T S F ROM OTHE R
ENV I RONMENTA L PO L LU TANT S

Methylmercury (MeHg) and lead are two wide-
spread environmental pollutants that have been
linked to cardiovascular effects in infants and chil-
dren, although as with maternal and environmental
tobacco smoking, the data are inconsistent. Adult
lead exposure is an established risk factor for
hypertension and CVD in older age; however, the
role of prenatal and childhood lead exposure in
cardiovascular risk is unclear. Prenatal lead exposure
measured using cord blood was associated with
elevated systolic BP and peripheral vascular resis-
tance in a cohort of 122 children followed from
birth to 9.5 years old in the United States [66],
whereas in a cohort in Mexico (age 7 to 15 years)
showed no association between mother’s cord lead
levels and offspring BP [67]. The timing of fetal
dose in these studies remains unclear as cord lead
represents fetal exposure just prior to delivery, rather
than throughout the entire pregnancy.

There are only a few studies on the association
between MeHg exposure and cardiovascular risk
in children. MeHg and BP associations have been
identified in several child populations. In the
Faroese cohort, Sørensen et al. [68] observed associ-
ations between prenatal (cord blood) MeHg expo-
sure and increased BP, with slightly weaker
relationships observed with maternal hair MeHg.
However, the study was repeated in the same cohort
at age 14 years and the effect of prenatal MeHg
exposure on BP was no longer apparent [69]. In
the Seychelles Child Development Study, prenatal
MeHg exposure was associated with increased dia-
stolic BP in boys at age 15 years [70] with no effect
observed in girls or with systolic BP for either sex.

Associations between MeHg and heart rate vari-
ability have also been observed in children [69,71]
although the direct significance of decreased heat
rate variability in young children for later develop-
ment of CVD is unknown. Prenatal (cord blood)
MeHg exposure was associated with a 47% decrease
in heat rate variability, but it had no effect on heart
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rate [69]. The investigators suggest that these effects
are attributable to the action of MeHg on the para-
sympathetic nervous system. In a case-control study,
subjects with Minamata disease (from mercury
poisoning) had a significantly decreased pulse pres-
sure and lower parasympathetic nervous activity
than control subjects did, although BP did not differ
between groups [72]. They also had a significantly
elevated resting heart rate, but heat rate variability
did not differ between groups. Similar to Sørensen
et al. [68], Oka et al. [72] proposed that a parasym-
pathetic nervous system dysfunction occurred after
prenatal MeHg exposure. Overall, evidence of
cardiovascular effects of MeHg exposure is not
very strong. However, the few studies on this topic
suggest that prenatal exposure may have a role in the
development of cardiovascular complications during
adult life.

FU TUR E R E S E A R CH D I R E C T I ON S AND
OPPOR TUN I T I E S

Collectively, these studies on environmental pollut-
ants such as tobacco smoke and ambient PM air
pollution support the notion that early life HAP
exposure may be an important determinant of adult
CVD risk and a contributor to the growing burden
of CVD in LMIC. Yet assessing this potential rela-
tionship presents a major challenge given the likely
complex interactions between HAP exposure and
nutritional and genetic factors, the temporal varia-
tion in HAP exposure concentrations and doses
over the life course, and the considerable logistical
constraints of conducting research in the low-
resource settings where HAP is most common.
Having identified the gaps in our knowledge, we
suggest some areas for further research that can
shed light on HAP exposure at different develop-
mental points, assess the potential magnitude of
this risk, and delineate specific mechanisms by
which pollution exposure affects CVD.

Longitudinal birth cohort studies are one design
for detecting and evaluating the impact of HAP on
children’s health by following their development
from conception through early childhood, adoles-
cence, and into adulthood. Most birth cohort studies
on environmental pollution have been launched in
developed countries and are relatively rare in
LMIC, where pollution exposures tend to be highest
andmay pose an even larger health burden. However,
recent large birth cohorts in Bangladesh on in utero/
neonatal arsenic exposure [73] illustrate their feasi-
bility and utility in low-resource settings. Though
costly and often logistically complex, the collection
of extensive data and specimens starting from the
pre-conception or prenatal period and into child-
hood provides the unique opportunity to quantify
the cardiovascular impacts of early life HAP expo-
sure, identify underlying mechanisms, and shed light
on the impacts of interactions between HAP expo-
sure and other environmental and epigenetic changes
over time.

Intervention studies such as RESPIRE, a
randomized trial looking at the effect of HAP on
respiratory function in women and children under
2 years of age [74,75] and the Intermediate Tech-
nology Development Group studies [76] can be
further extended to evaluate cardiovascular outcomes
such as blood pressure, potential inflammatory
biomarkers, and carotid artery IMT in relation to
the change in HAP exposure with the intervention.
Another opportunity is to use a natural experiment
of long-term exposure to solid versus clean fuel,
like the one existing in rural Matlab, Bangladesh.
Leveraging existing cohort studies that already
involve collection of important, related variables is
cost-effective and allows for a faster evaluation of
cardiovascular outcomes that otherwise may be diffi-
cult in long-term prospective study designs.

Another major challenge is obtaining accurate in
utero, neonatal, and childhood exposure measure-
ments and, in particular, estimating inhaled expo-
sure dose. Day-to-day changes in human behavior
coupled with substantial variability in spatial and
temporal pollutant levels limit the accuracy of
stationary samplers as a proxy for maternal or child
exposure. Personal PM exposure monitoring is
more accurate, but most monitors are too large
and/or heavy for children to carry for long periods.
In fact, past epidemiologic studies on HAP in preg-
nant women have all relied on proxy measurements
of PM pollution exposure [77] and just 2 studies
have measured personal PM pollution exposure in
children [78,79]. The development and validation
of robust, lightweight PM monitors is an important
step. Further, biomarker analysis may also provide
sensitive tools to trace even subtle changes in expo-
sure and dose in mothers before conception, during
pregnancy, and in children after birth. Several recent
studies indicate that biological tissues such as blood
and urine samples [80e84] may provide informa-
tion that reflects the dose of HAP exposure from
wood and other biomass combustion during preg-
nancy or at birth, as well as during childhood.
However, further research that identifies appropriate
biomarkers for HAP exposure assessment and also
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demonstrates the feasibility of measuring these
biomarkers in remote, low-resource settings is
needed.

The importance of the detrimental effects of
HAP to the health of women and children globally
has been acknowledged by the U.S. government and
the United Nations Foundation. Together, in 2010,
they formed the Global Alliance for Clean Cook-
stoves, an innovative publiceprivate partnership
whose mission is “to save lives, improve livelihoods,
empower women, and combat climate change by
creating a thriving global market for clean and effi-
cient household cooking solutions” [85]. Recent
funding opportunities include research on cook
stoves and child survival, with special focus on
adverse pregnancy outcomes and low birth weight,
and severe respiratory illness in young children.
Initiatives like this allow the research community
to examine the role of HAP in the early origins of
diseases and will provide the evidence needed for
effective interventions that will ultimately improve
the health of people in LMIC.
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