Benefits of Macitentan in Patients with Pulmonary Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

REVIEW

]u[ubiquity press

JINLV QIN GUIZUO WANG DONG HAN (D

*Author affiliations can be found in the back matter of this article

ABSTRACT

Background: This systematic review and meta-analysis aimed to determine the efficacy of macitentan in patients with pulmonary hypertension (PH).

Methods: A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. Randomized controlled trials (RCTs) on treatment of PH with macitentan, compared with placebo or blank, were reviewed. Studies were pooled to weighted mean differences (WMDs) and risk ratios (RRs), with 95% confidence intervals (CIs).

Results: Six RCTs (enrolling 1,003 participants) met the inclusion criteria. Macitentan showed significant effects on 6-min walk distance (6MWD) (WMD 12.06 m, 95% CI 2.12 to 21.99 m), pulmonary vascular resistance (PVR) (WMD –186.51 dyn·s/cm⁻⁵, 95% CI –232.72 to –140.29 dyn·s/cm⁻⁵), mean pulmonary artery pressure (mPAP) (WMD –3.20 mmHg, 95% CI –5.93 to –0.47 mmHg), N-terminal pro-brain natriuretic peptide (NT-proBNP) (WMD –232.47 ng/L, 95% wCI –318.22 to –146.72 ng/L), and cardiac index (WMD 0.39 L/min/m², 95% CI 0.20 to 0.58 L/min/m²).

Conclusion: Macitentan significantly improved 6MWD, PVR, mPAP, NT-proBNP, and cardiac index in patients with PH. Macitentan should be further validated in patients with PH.

CORRESPONDING AUTHOR: Dong Han

Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi, China

sesory@yeah.net

KEYWORDS:

macitentan; pulmonary hypertension; efficacy; metaanalysis

TO CITE THIS ARTICLE:

Qin J, Wang G, Han D. Benefits of Macitentan in Patients with Pulmonary Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Global Heart*. 2023; 18(1): 58. DOI: https:// doi.org/10.5334/gh.1274

INTRODUCTION

Pulmonary hypertension (PH) is a life-threatening disease defined as mean pulmonary arterial pressure (mPAP) \geq 20 mmHg at rest, as measured by right heart catheterization [1, 2]. According to the mechanism or underlying etiology, PH is divided into five clinical groups by the World Health Organization (WHO): Pulmonary arterial hypertension (PAH), PH secondary to left heart disease (PH-LHD), PH associated with hypoxemia, PH due to chronic thrombotic disease, embolic disease, or both, and miscellaneous [3, 4]. Despite the availability of treatments for all subgroups of PH, the prognosis for PH remains poor [3, 5]. The dual endothelin receptor antagonist (ERA) macitentan is characterized by sustained receptor binding [6], which is achieved by modifying the structure of bosentan to improve efficacy and safety [7]. Only a few randomized controlled trials (RCTs) have evaluated the efficacy of macitentan in patients with PH, and their results differed.

Therefore, the aim of this study was to perform a systematic review and meta-analysis of RCTs to determine the efficacy of macitentan in patients with PH.

METHODS

DATA SOURCES AND SEARCH STRATEGY

This systematic review and meta-analysis was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [8]. The protocol was previously registered in November 2022 in the PROSPERO database (Review register: CRD42022371410). The PubMed, Embase, Cochrane Library, and clinicaltrials.gov were searched for studies up to November 2022.

STUDY SELECTION

To be eligible for inclusion in the meta-analysis studies had to meet the following criteria: (a) inclusion of patients with PH aged \geq 12 years, mPAP \geq 25 mmHg, pulmonary vascular resistance (PVR) \geq 240 dyn·s/cm⁻⁵, and 6-min walk distance (6MWD) \geq 50 m, according to definition of WHO [1]; (b) use of a randomized controlled design to make a comparison of macitentan (10 mg once daily) with placebo or blank; and (c) follow-up for 12 weeks or longer to observe the efficacy. Studies were excluded if they included patients with the following: (a) severe co-existing diseases with poor functional status (eg, advanced renal failure, severe hepatic impairment); (b) current ERAs treatment; (c) previous pulmonary endarterectomy (PEA) or balloon pulmonary angioplasty (BPA); (d) pregnant or lactating women; and (e) drug or alcohol abuse. The search strings used for the databases were ('macitentan' OR 'Actelion-1' OR 'ACT-064992') AND ('pulmonary arterial hypertension' OR 'pulmonary hypertension' OR 'pulmonary artery pressure' OR 'PH'). The reference lists of any relevant review articles were also screened to identify studies that might have been missed in this search. No language restrictions were applied to our study selection process.

DATA EXTRACTION AND QUALITY ASSESSMENT

Two reviewers independently screened articles according to the inclusion criteria. The reviewers compared selected studies and differences were resolved by consensus. A third reviewer acted as arbitrator in case of discrepancy between reviewers. Data tables were used to collect all relevant data from texts, tables and figures of each included trial, including author, year of publication or last update posted, patient number and age, duration of follow-up, treatment category, baseline 6MWD, WHO functional class (FC), and outcomes such as 6MWD, PVR, mPAP, N-terminal probrain natriuretic peptide (NT-proBNP), cardiac index, improvement in WHO FC, hospitalization for worsening of PH, death due to PH, and all-cause death. Study quality was assessed using the Detsky Quality Assessment Scale [9–13]. This is a 20-point scale for studies with statistically significant results and a 21-point scale for studies without statistically significant results.

RISK OF BIAS OF INCLUDED TRIALS

Two reviewers independently assessed the risk of bias using the Cochrane collaboration risk of bias tool for RCTs [14].

Qin et al. Global Heart DOI: 10.5334/gh.1274 2

DATA SYNTHESIS AND STATISTICAL ANALYSIS

Meta-analyses were conducted where applicable; otherwise, outcomes were presented in narrative form. Data were analyzed using the RevMan Version 5.4.1 (The Cochrane Collaboration). Next, risk ratios (RRs) for discontinuous outcomes, and weighted mean differences (WMDs) for continuous outcomes, with corresponding 95% confidence intervals (CIs) were computed for individual trials. Chi-squared and Higgins I2 tests were used to assess heterogeneity among included trials. If significant heterogeneity ($p \le 0.10$ for Chi-squared test results or I2 \ge 50%) was obtained, we used a random-effects model, otherwise a fixed-effects model was used. And a P value <0.05 was taken to indicate statistical significance. The P value of Egger's linear regression test (STATA version 12.0) was used to assess the presence of publication bias in included studies for each outcome.

RESULTS

STUDY SELECTION AND CHARACTERISTICS

Of 1,825 studies recognized by the initial search, 57 were retrieved for more detailed assessment, and 6 trials [15–20, 28] were included in this meta-analysis (Figure 1). Baseline characteristics of trials included in this meta-analysis are shown in Table 1. A total of 1,003 patients were included: 498 assigned to the macitentan treatment groups and 505 to the control groups. The risk of bias results are summarized in Figure S1.

6-MIN WALK DISTANCE

Data on the change of 6MWD were extracted from five RCTs (929 patients). Compared with the control conditions, macitentan treatment significantly improved 6MWD (WMD 12.06 m, 95% CI 2.12 to 21.99 m; P = 0.02 [Figure 2A]). There was no significant heterogeneity (I2 = 43%; P = 0.14). Egger's test (P = 0.742) did not show evidence of publication bias.

Qin et al. Global Heart DOI: 10.5334/gh.1274

Figure 1 Flow chart for selection of studies.

STUDY	YEAR	QUALITY SCORE	FOLLOW- UP WEEKS	РН	REGIMEN	n	AGE, YEARS	MALE, %	6MWD, M (SD)	WHO FC, %			
(REF. #)				ТҮРЕ			(SD)			I	п	III	IV
Gatzoulis	2019	19	16	PAH	Macitentan	114	33 *	28.1	368.7 (74.5)	0	60.5	30.5	0
(15)					Placebo	112	31 *	39.3	380.3 (76.3)	0	58.9	41.1	0
Ghofrani	2017	20	24	CTEPH	Macitentan	40	58.2 (14.0)	35	353.0 (87.9)	0	30	70	0
(16)					Placebo	40	56.9 (13.9)	38	351.2 (73.8)	0	15	82.5	2.5
Pulido (17)	2013	18	104	PAH	Macitentan	242	44.5 (16.3)	19.8	363 (93.2)	0.4	49.6	47.9	2.1
					Placebo	250	46.7 (17.0)	26.1	352 (110.6)	0	51.8	46.6	1.6
Sitbon (19)	2019	21	12	PAH	Macitentan	43	58.0 (8.7)	51	385.8 (100.0)	2	63	35	0
					Placebo	42	59.0 (9.5)	52	383.2 (108.9)	2	55	43	0
Vachiéry	2018	17	12	PH-LHD	Macitentan	31	70.0 *	19.4	300 *	0	16.1	83.9	0
(20)					Placebo	32	72.0 *	50.0	305 *	0	31.3	68.8	0
SOPRANO	2021	16	12	PH-LHD	Macitentan	28	56.5 (8.2)	78.6	NR	NR	NR	NR	NR
(28)					Placebo	29	58.2 (7.0)	79.3	NR	NR	NR	NR	NR

PULMONARY VASCULAR RESISTANCE

The change of PVR was evaluated in four RCTs (307 patients). Compared with the control conditions, macitentan treatment significantly decreased PVR (WMD –186.51 dyn·s/cm⁻⁵, 95% CI –232.72 to –140.29 dyn·s/cm⁻⁵; P < 0.00001 [Figure 2B]). There was no significant heterogeneity (I2 = 46%; P = 0.13). Egger's test (P = 0.980) did not show evidence of publication bias.

MEAN PULMONARY ARTERY PRESSURE

The change of mPAP was evaluated in six randomized studies (392 patients). Compared with the control conditions, macitentan treatment significantly decreased mPAP (WMD –3.20 mmHg, 95% CI –5.93 to –0.47 mmHg; P = 0.02 [Figure 2C]). There was significant heterogeneity (I2 = 64%; P = 0.02). Egger's test (P = 0.271) did not show evidence of publication bias.

N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE

Data on the change of NT-proBNP were extracted from five RCTs (746 patients). Compared with the control conditions, the use of macitentan significantly decreased the level of NT-proBNP (WMD -232.47 ng/L, 95% CI -318.22 to -146.72 ng/L; P < 0.00001 [Figure 2D]). There was no significant heterogeneity (I2 = 19%; P = 0.29). Egger's test (P = 0.200) did not show evidence of publication bias.

CARDIAC INDEX

Data on the change of cardiac index were available from five trials (352 patients). Compared with the control groups, macitentan significantly improved cardiac index (WMD 0.39 L/min/m², 95% CI 0.20 to 0.58 L/min/m²; P < 0.0001 [Figure 2E]). There was significant heterogeneity (I2 = 57%; P = 0.05). Egger's test (P = 0.414) did not show evidence of publication bias.

IMPROVEMENT IN WHO FUNCTIONAL CLASS (FC)

Five RCTs reported data on improvement in WHO FC (933 patients). The percentage of patients with improvement in WHO FC did not differ significantly between the two groups (RR 1.32, 95% CI 0.99 to 1.74; P = 0.06 [Figure 3A]). There was no significant heterogeneity (I2 = 30%; P = 0.22). And the percentage in macitentan groups was 19.61% compared with 14.93% in control groups. Egger's test (P = 0.251) did not show evidence of publication bias.

HOSPITALIZATION FOR WORSENING OF PH

Two trials reported data on hospitalization for worsening of PH (including 555 patients). The percentage of patients with hospitalization for worsening of PH did not differ significantly between the two groups (RR 1.00, 95% CI 0.25 to 4.05; P = 1.00 [Figure 3B]). There was significant heterogeneity among the studies (I2 = 70%; P = 0.07). And the percentage in macitentan groups was 18.32% compared with 28.72% in control groups.

Table 1Baseline characteristicsof trials included in meta-analysis.

Abbreviations: CTEPH, chronic thromboembolic pulmonary hypertension; 6MWD, 6-min walk distance; NR, not reported; PAH, pulmonary arterial hypertension; PH, pulmonary hypertension; PH-LHD, PH secondary to left heart disease; SD, standard deviation; WHO FC, World Health Organization functional class. * Median.

PH-RELATED DEATH

Five RCTs reported data on PH-related death (946 patients), and only two trials had patient deaths. There was no statistically significant difference in PH-related mortality between the two groups (RR 0.50, 95% CI 0.21 to 1.17; P = 0.11 [Figure 3C]). There was no significant heterogeneity (I2 = 0%; P = 0.79). The PH-related mortality in macitentan groups was 1.49% compared with 3.15% in control groups.

Figure 2 Forest plot assessing the efficacy of macitentan on (A) 6-min walk distance, (B) pulmonary vascular resistance, (C) mean pulmonary artery pressure, (D) NT-proBNP, and (E) cardiac index.

ALL-CAUSE DEATH

Six RCTs reported data on all-cause death (1,003 patients), and five trials had patient deaths. There was no statistically significant difference in all-cause mortality between the two groups (RR 0.82, 95% CI 0.46 to 1.91; P = 0.50 [Figure 3D]). There was no significant heterogeneity (I2

Α	Maaitau		Cant			Diele Detie	Diak Datia
Study or Subgroup	Evonte	Total	Evente	Total	Woight	RISK RATIO	RISK RATIO
Cotzoulio 2010	10	111	16	112	22 20/		
Galzoulis 2019 Chofrani 2017	0	40	7	40	20.2%		
Bulido 2012	53	240	22	250	10.0 %	1.29 [0.33, 3.12]	
Sithon 2019	0	242 13	52	200	40.2%	1.71 [1.15, 2.50]	
	9 10	43	/ Q	42	11.2%	1.20 [0.51, 5.00]	
SOFRANO 2021	10	25	0	25	11.570	1.25 [0.59, 2.04]	
Total (95% CI)		464		469	100.0%	1.32 [0.99, 1.74]	
Total events	91		70				
Heterogeneity: Chi ² =	5.69, df = 4	4 (P = 0	.22); I² =	30%			
Test for overall effect:	Z = 1.91 (F	P = 0.06	S)				Favours control Favours macitentan
В							
	Maciten	tan	Contro	ol –		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	<u>M-H, Random, 95% C</u>	I M-H, Random, 95% Cl
Pulido 2013	45	242	79	250	63.9%	0.59 [0.43, 0.81]	■
Vachiéry 2018	5	31	2	32	36.1%	2.58 [0.54, 12.33]	
Total (95% CI)		273		282	100.0%	1.00 [0.25, 4.05]	
Total events	50		81				
Heterogeneity: Tau ² =	0.77; Chi ² :	= 3.31, d	df = 1 (P =	= 0.07);	l² = 70%		
Test for overall effect: 2	Z = 0.01 (P	= 1.00)	ì			r	0.01 0.1 1 10 100
						F	-avours macheman Favours control
C							
С	Maciter	ntan	Contr	ol		Risk Ratio	Risk Ratio
C Study or Subgroup	Maciter Events	ntan Total	Contr Events	ol Total	Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
C <u>Study or Subgroup</u> Ghofrani 2017	Maciter Events 0	ntan <u>Total</u> 40	Contr Events 1	ol <u>Total</u> 40	Weight 9.8%	Risk Ratio <u>M-H, Fixed, 95% CI</u> 0.33 [0.01, 7.95]	Risk Ratio M-H, Fixed, 95% Cl
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013	Maciter Events 0 7	ntan <u>Total</u> 40 242	Contr <u>Events</u> 1 14	ol <u>Total</u> 40 250	<u>Weight</u> 9.8% 90.2%	Risk Ratio <u>M-H, Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26]	Risk Ratio M-H, Fixed, 95% Cl
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013 Total (95% CI)	Maciter Events 0 7	ntan <u>Total</u> 40 242 282	Contr <u>Events</u> 1 14	ol <u>Total</u> 40 250	<u>Weight</u> 9.8% 90.2%	Risk Ratio <u>M-H. Fixed. 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26]	Risk Ratio M-H, Fixed, 95% CI
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events	Maciter <u>Events</u> 0 7	ntan <u>Total</u> 40 242 282	Contr Events 1 14	rol Total 40 250 290	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17]	Risk Ratio M-H, Fixed, 95% Cl
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Haterogeneity: Chi ² = 1	Maciter Events 0 7 7	ntan <u>Total</u> 40 242 282	Contr <u>Events</u> 1 14 15 79): I ² =	rol <u>Total</u> 40 250 290	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17]	Risk Ratio M-H, Fixed, 95% Cl
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect:	Maciter <u>Events</u> 0 7 0.07, df = 7 7 0.07, df = 7	ntan <u>Total</u> 40 242 282 1 (P = 0	Contr Events 1 14 15 .79); I ² =	rol <u>Total</u> 40 250 290 0%	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17]	Risk Ratio M-H, Fixed, 95% CI
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect:	Maciter <u>Events</u> 0 7 0.07, df = - Z = 1.59 (f	ntan <u>Total</u> 40 242 282 1 (P = 0 P = 0.11	Contr <u>Events</u> 1 14 15 .79); I ² =	rol <u>Total</u> 40 250 290 0%	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17]	Risk Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours macitentan Favours control
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect:	Maciter <u>Events</u> 0 7 0.07, df = Z = 1.59 (F	ntan 40 242 282 1 (P = 0 P = 0.11	Contr Events 1 14 15 .79); I ² =	rol <u>Total</u> 40 250 290 0%	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17]	Risk Ratio M-H, Fixed, 95% CI
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: D	Maciter <u>Events</u> 0 7 0.07, df = ⁻ Z = 1.59 (f	$\frac{\text{Total}}{40}$ 242 282 1 (P = 0 P = 0.11	Contr Events 1 14 15 .79); ² =	rol <u>Total</u> 40 250 290 0%	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Fairsk Ratio	Risk Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio
C <u>Study or Subgroup</u> Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: D Study or Subgroup	Maciter <u>Events</u> 0 7 0.07, df = ⁻⁷ Z = 1.59 (f Maciter Events	$\frac{\text{Total}}{40}$ 242 282 $1 (P = 0$ $P = 0.11$ Stan Total	Contr <u>Events</u> 1 14 15 .79); I ² =) Contr Events	rol <u>Total</u> 40 250 290 0%	Weight 9.8% 90.2% 100.0%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Fa Risk Ratio M-H. Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019	Maciter <u>Events</u> 0 7 0.07, df = - Z = 1.59 (F <u>Maciter</u> <u>Events</u> 1		Contr <u>Events</u> 1 14 15 .79); I ² =) Contr <u>Events</u> 0	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112	<u>Weight</u> 9.8% 90.2% 100.0% <u>Weight</u> 2.1%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Fairst Ratio <u>M-H. Fixed, 95% CI</u> 2.95 [0.12, 71.60]	Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017	Maciter <u>Events</u> 0 7 0.07, df = 7 Z = 1.59 (F <u>Maciter</u> <u>Events</u> 1 0	$ \begin{array}{r} Total \\ 40 \\ 242 \\ 282 \\ 1 (P = 0 \\ P = 0.11 \\ P = 0.11 \\ tan \\ Total \\ 114 \\ 40 \\ 40 \\ $	Contr <u>Events</u> 1 14 15 .79); ² =) Contr <u>Events</u> 0 2	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Faile Risk Ratio <u>M-H. Fixed, 95% Cl</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04]	Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013	Maciter <u>Events</u> 0 7 0.07, df = Z = 1.59 (F Maciter <u>Events</u> 1 0 14	$\begin{array}{r} \text{tran} \\ \hline \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0 \\ P = 0.11 \\ 1 \ (P = 0 \ (P = 0 \\ 1 \ (P = 0 \ (P $	Contr <u>Events</u> 1 14 15 .79); ² =) Contr <u>Events</u> 0 2 19	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77 4%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Fairst Ratio <u>M-H. Fixed, 95% CI</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48]	Risk Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% CI
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021	Maciter <u>Events</u> 0 7 0.07, df = Z = 1.59 (f Maciter <u>Events</u> 1 0 14 1	$\begin{array}{r} \text{tran} \\ \hline \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0 \\ P = 0.11 \\ 10 \\ 114 \\ 40 \\ 242 \\ 28 \end{array}$	Contr Events 1 14 15 .79); ² =) Contr Events 0 2 19 2	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77.4% 8.1%	Risk Ratio <u>M-H, Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] F: <u>Risk Ratio</u> <u>M-H, Fixed, 95% CI</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40]	Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018	Maciter <u>Events</u> 0 7 0.07, df = 7 Z = 1.59 (f Maciter <u>Events</u> 1 0 14 1 2	$\begin{array}{r} \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0) \\ P = 0.11 \\ 0 \\ 114 \\ 40 \\ 242 \\ 28 \\ 31 \end{array}$	Contr Events 1 14 15 .79); I ² =) Contr Events 0 2 19 2 0	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77.4% 8.1% 2.0%	Risk Ratio <u>M-H. Fixed. 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Find Risk Ratio <u>M-H. Fixed. 95% CI</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103 27]	Risk Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% CI
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018	Maciter <u>Events</u> 0 7 0.07, df = - Z = 1.59 (f Maciter <u>Events</u> 1 0 14 1 2	$ \begin{array}{r} Total \\ 40 \\ 242 \\ 282 \\ 1 (P = 0 \\ P = 0.11 \\ 114 \\ 40 \\ 242 \\ 28 \\ 31 \end{array} $	Contr Events 1 14 15 .79); I ² =) Contr Events 0 2 19 2 0	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77.4% 8.1% 2.0%	Risk Ratio <u>M-H. Fixed, 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Failed State Risk Ratio <u>M-H. Fixed, 95% CI</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103.27]	Risk Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H. Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018 Total (95% Cl)	Maciter <u>Events</u> 0 7 0.07, df = - Z = 1.59 (f Maciter <u>Events</u> 1 0 14 1 2	$ \begin{array}{r} Total \\ 40 \\ 242 \\ 282 \\ 1 (P = 0 \\ P = 0.11 \\ 11 \\ 114 \\ $	Contr Events 1 14 15 .79); I ² =)) Contr Events 0 2 19 2 0	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32 463	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77.4% 8.1% 2.0% 100.0%	Risk Ratio <u>M-H. Fixed. 95% CI</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Find Risk Ratio <u>M-H. Fixed. 95% CI</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103.27] 0.82 [0.46, 1.46]	Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018 Total (95% Cl) Total events	Maciter <u>Events</u> 0 7 0.07, df = 7 Z = 1.59 (F Maciter <u>Events</u> 1 0 14 1 2 18	$\begin{array}{r} \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0 \\ P = 0.11 \\ 1 \ (P = 0 \\ P = 0.11 \\ 1 \ (P = 0 \\ 28 \\ 31 \\ 455 \\ \end{array}$	Contr Events 1 14 15 .79); ² =)) Contr Events 0 2 19 2 0 23	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32 463	Weight 9.8% 90.2% 100.0% Weight 2.1% 10.4% 77.4% 8.1% 2.0% 100.0%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Find Risk Ratio <u>M-H. Fixed, 95% Cl</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103.27] 0.82 [0.46, 1.46]	Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl Risk Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% Cl) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018 Total (95% Cl) Total events Heterogeneity: Chi ² = 3	Maciter <u>Events</u> 0 7 0.07, df = 7 Z = 1.59 (F Maciter <u>Events</u> 1 0 14 1 2 18 3.10, df = 4	$\begin{array}{r} \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0 \\ P = 0.11 \\ 0 \\ P = 0.11 \\ 114 \\ 40 \\ 242 \\ 28 \\ 31 \\ 455 \\ 4 \ (P = 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	Contr Events 1 14 15 .79); ² =)) Contr Events 0 2 19 2 0 2 19 2 0 2 3.54); ² =	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32 463 0%	Weight 9.8% 90.2% 100.0% ¥ 2.1% 10.4% 77.4% 8.1% 2.0% 100.0%	Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] Failer Risk Ratio <u>M-H. Fixed, 95% Cl</u> 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103.27] 0.82 [0.46, 1.46]	Risk Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% Cl
C Study or Subgroup Ghofrani 2017 Pulido 2013 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect: D Study or Subgroup Gatzoulis 2019 Ghofrani 2017 Pulido 2013 SOPRANO 2021 Vachiéry 2018 Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect:	Maciter <u>Events</u> 0 7 0.07, df = 7 Z = 1.59 (f Maciter <u>Events</u> 1 0 14 1 2 18 3.10, df = 4 Z = 0.68 (f	$\begin{array}{c} \text{ntan} \\ \hline \text{Total} \\ 40 \\ 242 \\ 282 \\ 1 \ (P = 0 \\ P = 0.11 \\ \hline \text{ntan} \\ \hline \text{Total} \\ 114 \\ 40 \\ 242 \\ 28 \\ 31 \\ 455 \\ 4 \ (P = 0 \\ P = 0.50 \\ \hline \end{array}$	Contr <u>Events</u> 1 14 15 .79); $ ^2 =$) Contr <u>Events</u> 0 2 19 2 0 23 .54); $ ^2 =$	rol <u>Total</u> 40 250 290 0% rol <u>Total</u> 112 40 250 29 32 463 0%	Weight 9.8% 90.2% 100.0% 2.1% 10.4% 77.4% 8.1% 2.0% 100.0%	Risk Ratio M-H. Fixed. 95% CI 0.33 [0.01, 7.95] 0.52 [0.21, 1.26] 0.50 [0.21, 1.17] F: Risk Ratio M-H. Fixed. 95% CI 2.95 [0.12, 71.60] 0.20 [0.01, 4.04] 0.76 [0.39, 1.48] 0.52 [0.05, 5.40] 5.16 [0.26, 103.27] 0.82 [0.46, 1.46]	Risk Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours macitentan Favours control Risk Ratio M-H, Fixed, 95% CI 0.02 0.1 1 10 50 Eavours macitantan

= 0%; P = 0.54). The all-cause mortality in macitentan groups was 3.61% compared with 4.55% in control groups. Egger's test (P = 0.678) did not show evidence of publication bias.

DISCUSSION

This systematic review and meta-analysis is designed specifically to evaluate RCTs that have explored the efficacy of macitentan in patients with PH. Based on the current results, we observed that macitentan significantly improved 6MWD, PVR, mPAP, NT-proBNP, and cardiac index. There was a trend for improvement in WHO FC and reduction in PH-related deaths with macitentan, although not statistically significant.

PH is a major global health problem. The prevalence of PH in the global population is about 1%, and even reaches 10% in people over 65 years old [21]. In recent years, research on

Figure 3 Forest plot assessing the efficacy of macitentan on **(A)** improvement in WHO FC, **(B)** hospitalization for worsening of PH, **(C)** PH-related death, and **(D)** all-cause death. macitentan has focused on PAH, PH-LHD, and chronic thromboembolic PH (CTEPH). Pulmonary arterial hypertension (group 1) is characterized by loss and obstructive remodeling of the pulmonary vascular bed. Pulmonary arterial hypertension is characterized by precapillary PH, defined as mPAP \geq 20 mm Hg, pulmonary artery wedge pressure (PAWP) \leq 15 mm Hg, and PVR \geq 3 Wood units (WU) [1]. Chronic elevation of PVR may cause progressive right ventricular (RV) dysfunction and RV failure (RVF) [22]. Persistence of RVF may lead to increased right atrial pressure and decreased cardiac index [3]. Despite guidelines recommending combination therapy targeting multiple pathways of PAH, patient outcomes remain poor [21, 23]. PH-LHD (group 2) is initially caused by a passive increase in left atrial pressure and develops further in response to endothelial dysfunction and vasoconstriction [24]. In patients with chronic heart failure and PH-LHD, elevated plasma endothelin-1 levels are associated with increased pulmonary pressure [25] and greater risk of death [26]. Chronic thromboembolic PH (group 4) is characterized by pulmonary artery obstruction and vascular remodeling caused by chronic organized thrombus. Although CTEPH has treatment options of PEA and BPA. Some patients who are ineligible for treatment or have residual or recurrent PH still lack effective treatments.

LIMITATIONS

This study met most of the methodological criteria recommended for systematic reviews and meta-analyses [27]. However, some limitations need to be considered when interpreting the results of this study. Firstly, some included studies had small sample sizes, which may have reduced the power of the results. Secondly, the number of included studies was small. Thirdly, some potential confounding between-study variables could have influenced outcomes and thus this may have also affected our meta-analysis results. Fourthly, this meta-analysis included three different clinical groups of PH that may respond differently to macitentan. Finally, because the inability to analyze individual patient data, this pooled data meta-analysis was not patient-level, and there may be within-study heterogeneity as well as between-study heterogeneity, so the results should be considered provisional.

Future RCTs should elucidate the efficacy of macitentan on long-term outcomes of PH, particularly mortality, and explore the possibilities of macitentan in different clinical groups with PH.

CONCLUSION

Macitentan significantly improved 6MWD, PVR, mPAP, NT-proBNP, and cardiac index in patients with PH. Macitentan should be further validated in patients with PH.

DATA ACCESSIBILITY STATEMENT

Extracted data are available on request to the corresponding author.

ADDITIONAL FILES

The additional files for this article can be found as follows:

- Supplementary File 1. Figure s1. DOI: https://doi.org/10.5334/gh.1274.s1
- Supplementary File 2. PRISMA 2020 Checklist. DOI: https://doi.org/10.5334/gh.1274.s2

ACKNOWLEDGEMENTS

The authors would like to thank Stephanie Sun for her music, which always heals the heart.

COMPETING INTERESTS

The authors have no competing interests to declare.

Qin et al. Global Heart DOI: 10.5334/gh.1274 7

AUTHORS CONTRIBUTIONS

All authors, led by D.H., were involved in the concept and protocol design of the meta-analysis. J.Q. and G.W. screened the titles and abstracts and extracted data from the articles. J.Q. was primarily responsible for statistical analyses. D.H. was primarily involved in the interpretation of the quality data. All authors contributed to interpreting the results. G.W. and D.H accessed and verified the data. All authors contributed to the writing of the article and approved its submission. D.H. was responsible for the decision to submit the article.

AUTHOR AFFILIATIONS

Jinlv Qin

Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China

Guizuo Wang

Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China

Dong Han Dong Han Dong Han

Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China

REFERENCES

- Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. *Eur Respir* J. 2019; 53(1). DOI: https://doi.org/10.1183/13993003.01913-2018
- 2. Qin J, Wang G, Han D. Selexipag in patients with pulmonary hypertension: a systematic review and meta-analysis of randomized controlled trials. *Curr Probl Cardiol*. 2023; 48(2): 101466. DOI: https://doi.org/10.1016/j.cpcardiol.2022.101466
- 3. Mandras SA, Mehta HS, Vaidya A. Pulmonary hypertension: a brief guide for clinicians. *Mayo Clin Proc.* 2020; 95(9): 1978–1988. DOI: https://doi.org/10.1016/j.mayocp.2020.04.039
- 4. **Pahal P, Sharma S.** *Idiopathic pulmonary artery hypertension*. In: StatPearls. Treasure Island, FL: StatPearls Publishing LLC; 2022.
- Wang G, Shang W, Ren Y, Liu S, Ren X, Wei S, et al. Benefits of statins in chronic obstructive pulmonary disease patients with pulmonary hypertension: A meta-analysis. *Eur J Intern Med.* 2019; 70: 39–42. DOI: https://doi.org/10.1016/j.ejim.2019.09.009
- Gatfield J, Mueller Grandjean C, Sasse T, Clozel M, Nayler O. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells. *PLoS One*. 2012; 7(10): e47662. DOI: https://doi.org/10.1371/journal.pone.0047662
- Bolli MH, Boss C, Binkert C, Buchmann S, Bur D, Hess P, et al. The discovery of N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N'-propylsulfamide (Macitentan), an orally active, potent dual endothelin receptor antagonist. *J Med Chem.* 2012; 55(17): 7849–61. DOI: https://doi.org/10.1021/jm3009103
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009; 151(4): 264–9. DOI: https://doi. org/10.7326/0003-4819-151-4-200908180-00135
- Detsky AS, Naylor CD, O'Rourke K, McGeer AJ, L'Abbé KA. Incorporating variations in the quality of individual randomized trials into meta-analysis. *J Clin Epidemiol*. 1992; 45(3): 255–65. DOI: https:// doi.org/10.1016/0895-4356(92)90085-2
- 10. **Shang W, Zhang Y, Wang G, Han D.** Anakinra was not associated with lower mortality in hospitalised COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials. *Rev Med Virol.* 2023; 33(2): e2418. DOI: https://doi.org/10.1002/rmv.2418
- 11. **Shang W, Wang Y, Wang G, Han D.** Benefits of ozone on mortality in patients with COVID-19: A systematic review and meta-analysis. *Complement Ther Med*. 2023; 72: 102907. DOI: https://doi.org/10.1016/j.ctim.2022.102907
- Ren Y, Wang G, Han D. Statins in hospitalized COVID-19 patients: A systematic review and metaanalysis of randomized controlled trials. J Med Virol. 2023; 95(6): e28823. DOI: https://doi.org/10.1002/ jmv.28823
- 13. **Wang G, Qin J, Han D.** Long-term safety of macitentan in patients with pulmonary hypertension: A meta-analysis of randomised controlled trials. *Eur J Clin Invest*. 2023: e14059. DOI: https://doi. org/10.1111/eci.14059
- Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011; 343: d5928. DOI: https://doi.org/10.1136/bmj.d5928

Qin et al. Global Heart DOI: 10.5334/gh.1274

- Gatzoulis MA, Landzberg M, Beghetti M, Berger RM, Efficace M, Gesang S, et al. Evaluation of Macitentan in Patients With Eisenmenger Syndrome. *Circulation*. 2019; 139(1): 51–63. DOI: https:// doi.org/10.1161/CIRCULATIONAHA.118.033575
- 16. **Ghofrani HA, Simonneau G, D'Armini AM, Fedullo P, Howard LS, Jaïs X,** et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT–1): Results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. *Lancet Respir Med.* 2017; 5(10): 785–794. DOI: https://doi.org/10.1016/S2213-2600(17)30305-3
- Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani HA, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013; 369(9): 809–18. DOI: https://doi.org/10.1056/NEJMoa1213917
- Galiè N, Jansa P, Pulido T, Channick RN, Delcroix M, Ghofrani HA, et al. SERAPHIN haemodynamic substudy: The effect of the dual endothelin receptor antagonist macitentan on haemodynamic parameters and NT-proBNP levels and their association with disease progression in patients with pulmonary arterial hypertension. *Eur Heart J*. 2017; 38(15): 1147–1155. DOI: https://doi.org/10.1093/ eurheartj/ehx025
- Sitbon O, Bosch J, Cottreel E, Csonka D, de Groote P, Hoeper MM, et al. Macitentan for the treatment of portopulmonary hypertension (PORTICO): a multicentre, randomised, double-blind, placebocontrolled, phase 4 trial. *Lancet Respir Med.* 2019; 7(7): 594–604. DOI: https://doi.org/10.1016/ S2213-2600(19)30091-8
- Vachiéry JL, Delcroix M, Al-Hiti H, Efficace M, Hutyra M, Lack G, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. *Eur Respir J.* 2018; 51(2). DOI: https://doi. org/10.1183/13993003.01886-2017
- Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa-Hahnle K, et al. A global view of pulmonary hypertension. *Lancet Respir Med*. 2016; 4(4): 306–22. DOI: https://doi.org/10.1016/S2213-2600(15)00543-3
- 22. **Rose-Jones LJ, McLaughlin VV.** Pulmonary hypertension: Types and treatments. *Curr Cardiol Rev.* 2015; 11(1): 73–9. DOI: https://doi.org/10.2174/1573403X09666131117164122
- 23. Galiè N, Channick RN, Frantz RP, Grünig E, Jing ZC, Moiseeva O, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. *Eur Respir J*. 2019; 53(1). DOI: https://doi. org/10.1183/13993003.01889-2018
- 24. Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL. Left ventricular heart failure and pulmonary hypertension. *Eur Heart J*. 2016; 37(12): 942–54. DOI: https://doi.org/10.1093/eurheartj/ehv512
- Cody RJ, Haas GJ, Binkley PF, Capers Q, Kelley R. Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. *Circulation*. 1992; 85(2): 504–9. DOI: https://doi.org/10.1161/01.CIR.85.2.504
- 26. **Pousset F, Isnard R, Lechat P, Kalotka H, Carayon A, Maistre G,** et al. Prognostic value of plasma endothelin-1 in patients with chronic heart failure. *Eur Heart J.* 1997; 18(2): 254–8. DOI: https://doi. org/10.1093/oxfordjournals.eurheartj.a015228
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Ann Intern Med.* 2009; 151(4): W65–94. DOI: https://doi. org/10.7326/0003-4819-151-4-200908180-00136
- Clinical Study to Assess the Efficacy and Safety of Macitentan in Patients With Pulmonary Hypertension After Left Ventricular Assist Device Implantation (SOPRANO). NCT02554903 trial.
 2021. Available at: https://clinicaltrials.gov/ct2/show/NCT02554903. Accessed November 3, 2022.

Qin et al. Global Heart DOI: 10.5334/gh.1274

TO CITE THIS ARTICLE:

Qin J, Wang G, Han D. Benefits of Macitentan in Patients with Pulmonary Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Global Heart*. 2023; 18(1): 58. DOI: https:// doi.org/10.5334/gh.1274

Submitted: 01 June 2023 Accepted: 05 October 2023 Published: 26 October 2023

COPYRIGHT:

© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/ licenses/by/4.0/.

Global Heart is a peer-reviewed open access journal published by Ubiquity Press.

#